Artificial Intelligence In Medical Imaging Download Ebook PDF Epub Online

Author : Erik R. Ranschaert
Sergey Morozov
Publisher : Springer
Release : 2019-01-29
Page : 373
Category : Medical
ISBN 13 : 3319948784
Description :


This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.


Author : Lia Morra
Silvia Delsanto
Publisher : CRC Press
Release : 2019-11-25
Page : 152
Category : Science
ISBN 13 : 1000753085
Description :


This book, written by authors with more than a decade of experience in the design and development of artificial intelligence (AI) systems in medical imaging, will guide readers in the understanding of one of the most exciting fields today. After an introductory description of classical machine learning techniques, the fundamentals of deep learning are explained in a simple yet comprehensive manner. The book then proceeds with a historical perspective of how medical AI developed in time, detailing which applications triumphed and which failed, from the era of computer aided detection systems on to the current cutting-edge applications in deep learning today, which are starting to exhibit on-par performance with clinical experts. In the last section, the book offers a view on the complexity of the validation of artificial intelligence applications for commercial use, describing the recently introduced concept of software as a medical device, as well as good practices and relevant considerations for training and testing machine learning systems for medical use. Open problematics on the validation for public use of systems which by nature continuously evolve through new data is also explored. The book will be of interest to graduate students in medical physics, biomedical engineering and computer science, in addition to researchers and medical professionals operating in the medical imaging domain, who wish to better understand these technologies and the future of the field. Features: An accessible yet detailed overview of the field Explores a hot and growing topic Provides an interdisciplinary perspective


Author : Guorong Wu
Dinggang Shen
Publisher : Academic Press
Release : 2016-08-11
Page : 512
Category : Technology & Engineering
ISBN 13 : 0128041145
Description :


Machine Learning and Medical Imaging presents state-of- the-art machine learning methods in medical image analysis. It first summarizes cutting-edge machine learning algorithms in medical imaging, including not only classical probabilistic modeling and learning methods, but also recent breakthroughs in deep learning, sparse representation/coding, and big data hashing. In the second part leading research groups around the world present a wide spectrum of machine learning methods with application to different medical imaging modalities, clinical domains, and organs. The biomedical imaging modalities include ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), histology, and microscopy images. The targeted organs span the lung, liver, brain, and prostate, while there is also a treatment of examining genetic associations. Machine Learning and Medical Imaging is an ideal reference for medical imaging researchers, industry scientists and engineers, advanced undergraduate and graduate students, and clinicians. Demonstrates the application of cutting-edge machine learning techniques to medical imaging problems Covers an array of medical imaging applications including computer assisted diagnosis, image guided radiation therapy, landmark detection, imaging genomics, and brain connectomics Features self-contained chapters with a thorough literature review Assesses the development of future machine learning techniques and the further application of existing techniques


Author : Lei Xing
Maryellen L. Giger
Publisher : Academic Press
Release : 2020-09-16
Page : 568
Category : Business & Economics
ISBN 13 : 0128212586
Description :


Artificial Intelligence Medicine: Technical Basis and Clinical Applications presents a comprehensive overview of the field, ranging from its history and technical foundations, to specific clinical applications and finally to prospects. Artificial Intelligence (AI) is expanding across all domains at a breakneck speed. Medicine, with the availability of large multidimensional datasets, lends itself to strong potential advancement with the appropriate harnessing of AI. The integration of AI can occur throughout the continuum of medicine: from basic laboratory discovery to clinical application and healthcare delivery. Integrating AI within medicine has been met with both excitement and scepticism. By understanding how AI works, and developing an appreciation for both limitations and strengths, clinicians can harness its computational power to streamline workflow and improve patient care. It also provides the opportunity to improve upon research methodologies beyond what is currently available using traditional statistical approaches. On the other hand, computers scientists and data analysts can provide solutions, but often lack easy access to clinical insight that may help focus their efforts. This book provides vital background knowledge to help bring these two groups together, and to engage in more streamlined dialogue to yield productive collaborative solutions in the field of medicine. Provides history and overview of artificial intelligence, as narrated by pioneers in the field Discusses broad and deep background and updates on recent advances in both medicine and artificial intelligence that enabled the application of artificial intelligence Addresses the ever-expanding application of this novel technology and discusses some of the unique challenges associated with such an approach


Author : K.C. Santosh
Sameer Antani
Publisher : CRC Press
Release : 2019-08-20
Page : 238
Category : Computers
ISBN 13 : 0429642490
Description :


The book discusses varied topics pertaining to advanced or up-to-date techniques in medical imaging using artificial intelligence (AI), image recognition (IR) and machine learning (ML) algorithms/techniques. Further, coverage includes analysis of chest radiographs (chest x-rays) via stacked generalization models, TB type detection using slice separation approach, brain tumor image segmentation via deep learning, mammogram mass separation, epileptic seizures, breast ultrasound images, knee joint x-ray images, bone fracture detection and labeling, and diabetic retinopathy. It also reviews 3D imaging in biomedical applications and pathological medical imaging.


Author : K.C. Santosh
Sameer Antani
Publisher : CRC Press
Release : 2019-08-20
Page : 238
Category : Computers
ISBN 13 : 0429639325
Description :


The book discusses varied topics pertaining to advanced or up-to-date techniques in medical imaging using artificial intelligence (AI), image recognition (IR) and machine learning (ML) algorithms/techniques. Further, coverage includes analysis of chest radiographs (chest x-rays) via stacked generalization models, TB type detection using slice separation approach, brain tumor image segmentation via deep learning, mammogram mass separation, epileptic seizures, breast ultrasound images, knee joint x-ray images, bone fracture detection and labeling, and diabetic retinopathy. It also reviews 3D imaging in biomedical applications and pathological medical imaging.


Author : Kenji Suzuki
Yisong Chen
Publisher : Springer
Release : 2018-01-09
Page : 387
Category : Technology & Engineering
ISBN 13 : 331968843X
Description :


This book offers the first comprehensive overview of artificial intelligence (AI) technologies in decision support systems for diagnosis based on medical images, presenting cutting-edge insights from thirteen leading research groups around the world. Medical imaging offers essential information on patients’ medical condition, and clues to causes of their symptoms and diseases. Modern imaging modalities, however, also produce a large number of images that physicians have to accurately interpret. This can lead to an “information overload” for physicians, and can complicate their decision-making. As such, intelligent decision support systems have become a vital element in medical-image-based diagnosis and treatment. Presenting extensive information on this growing field of AI, the book offers a valuable reference guide for professors, students, researchers and professionals who want to learn about the most recent developments and advances in the field.


Author : Kalaivani Anbarasan
Publisher : Medical Information Science Reference
Release : 2020
Page : 300
Category :
ISBN 13 : 9781799830924
Description :


"This book examines the application of artificial intelligence in medical imaging diagnostics"--


Author : G. Schaefer
A. Hassanien
Publisher : CRC Press
Release : 2009-03-24
Page : 504
Category : Computers
ISBN 13 : 9781420060614
Description :


CI Techniques & Algorithms for a Variety of Medical Imaging Situations Documents recent advances and stimulates further research A compilation of the latest trends in the field, Computational Intelligence in Medical Imaging: Techniques and Applications explores how intelligent computing can bring enormous benefit to existing technology in medical image processing as well as improve medical imaging research. The contributors also cover state-of-the-art research toward integrating medical image processing with artificial intelligence and machine learning approaches. The book presents numerous techniques, algorithms, and models. It describes neural networks, evolutionary optimization techniques, rough sets, support vector machines, tabu search, fuzzy logic, a Bayesian probabilistic framework, a statistical parts-based appearance model, a reinforcement learning-based multistage image segmentation algorithm, a machine learning approach, Monte Carlo simulations, and intelligent, deformable models. The contributors discuss how these techniques are used to classify wound images, extract the boundaries of skin lesions, analyze prostate cancer, handle the inherent uncertainties in mammographic images, and encapsulate the natural intersubject anatomical variance in medical images. They also examine prostate segmentation in transrectal ultrasound images, automatic segmentation and diagnosis of bone scintigraphy, 3-D medical image segmentation, and the reconstruction of SPECT and PET tomographic images.


Author : Suzuki, Kenji
Publisher : IGI Global
Release : 2012-01-31
Page : 524
Category : Computers
ISBN 13 : 1466600608
Description :


"This book provides a comprehensive overview of machine learning research and technology in medical decision-making based on medical images"--Provided by publisher.


Author : Adam Bohr
Kaveh Memarzadeh
Publisher : Academic Press
Release : 2020-06-21
Page : 378
Category : Computers
ISBN 13 : 0128184396
Description :


Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. Highlights different data techniques in healthcare data analysis, including machine learning and data mining Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks Includes applications and case studies across all areas of AI in healthcare data


Author : Sanjay Saxena
Sudip Paul
Publisher :
Release : 2020-08
Page : 304
Category : Medical
ISBN 13 : 9781799850717
Description :


Before the modern age of medicine, the chance of surviving a terminal disease such as cancer was minimal at best. After embracing the age of computer-aided medical analysis technologies, however, detecting and preventing individuals from contracting a variety of life-threatening diseases has led to a greater survival percentage and increased the development of algorithmic technologies in healthcare. Deep Learning Applications in Medical Imaging is a pivotal reference source that provides vital research on the application of generating pictorial depictions of the interior of a body for medical intervention and clinical analysis. While highlighting topics such as artificial neural networks, disease prediction, and healthcare analysis, this publication explores image acquisition and pattern recognition as well as the methods of treatment and care. This book is ideally designed for diagnosticians, medical imaging specialists, healthcare professionals, physicians, medical researchers, academicians, and students.


Author : Subhi J. Al'Aref
Gurpreet Singh
Publisher : Academic Press
Release : 2020-11-20
Page : 454
Category : Medical
ISBN 13 : 0128202742
Description :


Machine Learning in Cardiovascular Medicine addresses the ever-expanding applications of artificial intelligence (AI), specifically machine learning (ML), in healthcare and within cardiovascular medicine. The book focuses on emphasizing ML for biomedical applications and provides a comprehensive summary of the past and present of AI, basics of ML, and clinical applications of ML within cardiovascular medicine for predictive analytics and precision medicine. It helps readers understand how ML works along with its limitations and strengths, such that they can could harness its computational power to streamline workflow and improve patient care. It is suitable for both clinicians and engineers; providing a template for clinicians to understand areas of application of machine learning within cardiovascular research; and assist computer scientists and engineers in evaluating current and future impact of machine learning on cardiovascular medicine. Provides an overview of machine learning, both for a clinical and engineering audience Summarize recent advances in both cardiovascular medicine and artificial intelligence Discusses the advantages of using machine learning for outcomes research and image processing Addresses the ever-expanding application of this novel technology and discusses some of the unique challenges associated with such an approach


Author : Nilanjan Dey
Surekha Borra
Publisher : Academic Press
Release : 2018-11-30
Page : 345
Category : Science
ISBN 13 : 012816087X
Description :


Machine Learning in Bio-Signal Analysis and Diagnostic Imaging presents original research on the advanced analysis and classification techniques of biomedical signals and images that cover both supervised and unsupervised machine learning models, standards, algorithms, and their applications, along with the difficulties and challenges faced by healthcare professionals in analyzing biomedical signals and diagnostic images. These intelligent recommender systems are designed based on machine learning, soft computing, computer vision, artificial intelligence and data mining techniques. Classification and clustering techniques, such as PCA, SVM, techniques, Naive Bayes, Neural Network, Decision trees, and Association Rule Mining are among the approaches presented. The design of high accuracy decision support systems assists and eases the job of healthcare practitioners and suits a variety of applications. Integrating Machine Learning (ML) technology with human visual psychometrics helps to meet the demands of radiologists in improving the efficiency and quality of diagnosis in dealing with unique and complex diseases in real time by reducing human errors and allowing fast and rigorous analysis. The book's target audience includes professors and students in biomedical engineering and medical schools, researchers and engineers. Examines a variety of machine learning techniques applied to bio-signal analysis and diagnostic imaging Discusses various methods of using intelligent systems based on machine learning, soft computing, computer vision, artificial intelligence and data mining Covers the most recent research on machine learning in imaging analysis and includes applications to a number of domains


Author : Harjit Singh
Janet Neutze
Publisher : Springer Science & Business Media
Release : 2011-12-02
Page : 362
Category : Medical
ISBN 13 : 9781461409441
Description :


Radiology Fundamentals is a concise introduction to the dynamic field of radiology for medical students, non-radiology house staff, physician assistants, nurse practitioners, radiology assistants, and other allied health professionals. The goal of the book is to provide readers with general examples and brief discussions of basic radiographic principles and to serve as a curriculum guide, supplementing a radiology education and providing a solid foundation for further learning. Introductory chapters provide readers with the fundamental scientific concepts underlying the medical use of imaging modalities and technology, including ultrasound, computed tomography, magnetic resonance imaging, and nuclear medicine. The main scope of the book is to present concise chapters organized by anatomic region and radiology sub-specialty that highlight the radiologist’s role in diagnosing and treating common diseases, disorders, and conditions. Highly illustrated with images and diagrams, each chapter in Radiology Fundamentals begins with learning objectives to aid readers in recognizing important points and connecting the basic radiology concepts that run throughout the text. It is the editors’ hope that this valuable, up-to-date resource will foster and further stimulate self-directed radiology learning—the process at the heart of medical education.


Author : Guorong Wu
Publisher : Academic Press
Release : 2016-08-19
Page : 512
Category :
ISBN 13 : 9780128040768
Description :


"Machine Learning and Medical Imaging" presents state-of- the-art machine learning methods in medical image analysis. It first summarizes cutting-edge machine learning algorithms in medical imaging, including not only classical probabilistic modeling and learning methods, but also recent breakthroughs in deep learning, sparse representation/coding, and big data hashing. In the second part leading research groups around the world present a wide spectrum of machine learning methods with application to different medical imaging modalities, clinical domains, and organs. The biomedical imaging modalities include ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), histology, and microscopy images. The targeted organs span the lung, liver, brain, and prostate, while there is also a treatment of examining genetic associations. "Machine Learning and Medical Imaging" is an ideal reference for medical imaging researchers, industry scientists and engineers, advanced undergraduate and graduate students, and clinicians. Demonstrates the application of cutting-edge machine learning techniques to medical imaging problemsCovers an array of medical imaging applications including computer assisted diagnosis, image guided radiation therapy, landmark detection, imaging genomics, and brain connectomicsFeatures self-contained chapters with a thorough literature reviewAssesses the development of future machine learning techniques and the further application of existing techniques


Author : Fei Wang
Dinggang Shen
Publisher : Springer
Release : 2012-11-13
Page : 276
Category : Computers
ISBN 13 : 9783642354274
Description :


This book constitutes the refereed proceedings of the Third International Workshop on Machine Learning in Medical Imaging, MLMI 2012, held in conjunction with MICCAI 2012, in Nice, France, in October 2012. The 33 revised full papers presented were carefully reviewed and selected from 67 submissions. The main aim of this workshop is to help advance the scientific research within the broad field of machine learning in medical imaging. It focuses on major trends and challenges in this area, and it presents work aimed to identify new cutting-edge techniques and their use in medical imaging.


Author : Hayit Greenspan
Ryutaro Tanno
Publisher : Springer Nature
Release : 2019-10-10
Page : 192
Category : Computers
ISBN 13 : 3030326896
Description :


This book constitutes the refereed proceedings of the First International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2019, and the 8th International Workshop on Clinical Image-Based Procedures, CLIP 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019. For UNSURE 2019, 8 papers from 15 submissions were accepted for publication. They focus on developing awareness and encouraging research in the field of uncertainty modelling to enable safe implementation of machine learning tools in the clinical world. CLIP 2019 accepted 11 papers from the 15 submissions received. The workshops provides a forum for work centred on specific clinical applications, including techniques and procedures based on comprehensive clinical image and other data.


Author : Bernard Nordlinger
Cédric Villani
Publisher : Springer Nature
Release : 2020-03-17
Page : 279
Category : Technology & Engineering
ISBN 13 : 3030321614
Description :


This book provides an overview of the role of AI in medicine and, more generally, of issues at the intersection of mathematics, informatics, and medicine. It is intended for AI experts, offering them a valuable retrospective and a global vision for the future, as well as for non-experts who are curious about this timely and important subject. Its goal is to provide clear, objective, and reasonable information on the issues covered, avoiding any fantasies that the topic “AI” might evoke. In addition, the book seeks to provide a broad kaleidoscopic perspective, rather than deep technical details.


Author : G. Schaefer
A. Hassanien
Publisher : Chapman & Hall/CRC
Release : 2017-09-12
Page : 510
Category :
ISBN 13 : 9781138112209
Description :


CI Techniques & Algorithms for a Variety of Medical Imaging Situations Documents recent advances and stimulates further research A compilation of the latest trends in the field, Computational Intelligence in Medical Imaging: Techniques and Applications explores how intelligent computing can bring enormous benefit to existing technology in medical image processing as well as improve medical imaging research. The contributors also cover state-of-the-art research toward integrating medical image processing with artificial intelligence and machine learning approaches. The book presents numerous techniques, algorithms, and models. It describes neural networks, evolutionary optimization techniques, rough sets, support vector machines, tabu search, fuzzy logic, a Bayesian probabilistic framework, a statistical parts-based appearance model, a reinforcement learning-based multistage image segmentation algorithm, a machine learning approach, Monte Carlo simulations, and intelligent, deformable models. The contributors discuss how these techniques are used to classify wound images, extract the boundaries of skin lesions, analyze prostate cancer, handle the inherent uncertainties in mammographic images, and encapsulate the natural intersubject anatomical variance in medical images. They also examine prostate segmentation in transrectal ultrasound images, automatic segmentation and diagnosis of bone scintigraphy, 3-D medical image segmentation, and the reconstruction of SPECT and PET tomographic images.