Openintro Statistics Download Ebook PDF Epub Online

Author : David Diez
Christopher Barr
Publisher :
Release : 2015-07-02
Page :
Category :
ISBN 13 : 9781943450046
Description :


The OpenIntro project was founded in 2009 to improve the quality and availability of education by producing exceptional books and teaching tools that are free to use and easy to modify. We feature real data whenever possible, and files for the entire textbook are freely available at openintro.org. Visit our website, openintro.org. We provide free videos, statistical software labs, lecture slides, course management tools, and many other helpful resources.


Author : David Diez
Christopher Barr
Publisher :
Release : 2015-07-02
Page :
Category :
ISBN 13 : 9781943450039
Description :


The OpenIntro project was founded in 2009 to improve the quality and availability of education by producing exceptional books and teaching tools that are free to use and easy to modify. We feature real data whenever possible, and files for the entire textbook are freely available at openintro.org. Visit our website, openintro.org. We provide free videos, statistical software labs, lecture slides, course management tools, and many other helpful resources.


Author : David Diez
Christopher Barr
Publisher :
Release : 2015-10-18
Page : 436
Category :
ISBN 13 : 9781943450053
Description :



Author : David Diez
Christopher Barr
Publisher :
Release : 2015-05-10
Page :
Category :
ISBN 13 : 9781943450008
Description :


The OpenIntro project was founded in 2009 to improve the quality and availability of education by producing exceptional books and teaching tools that are free to use and easy to modify. We feature real data whenever possible, and files for the entire textbook are freely available at openintro.org.The future for OpenIntro depends on the involvement and enthusiasm of our community. Visit our website, openintro.org. We provide free videos, statistical software labs, lecture slides, course management tools, and many other helpful resources.


Author : Mine Çetinkaya-Rundel
Johanna Hardin
Publisher :
Release : 2021-06-12
Page :
Category :
ISBN 13 : 9781943450145
Description :



Author : Tilman M. Davies
Publisher : No Starch Press
Release : 2016-07-16
Page : 832
Category : Computers
ISBN 13 : 1593277792
Description :


The Book of R is a comprehensive, beginner-friendly guide to R, the world’s most popular programming language for statistical analysis. Even if you have no programming experience and little more than a grounding in the basics of mathematics, you’ll find everything you need to begin using R effectively for statistical analysis. You’ll start with the basics, like how to handle data and write simple programs, before moving on to more advanced topics, like producing statistical summaries of your data and performing statistical tests and modeling. You’ll even learn how to create impressive data visualizations with R’s basic graphics tools and contributed packages, like ggplot2 and ggvis, as well as interactive 3D visualizations using the rgl package. Dozens of hands-on exercises (with downloadable solutions) take you from theory to practice, as you learn: –The fundamentals of programming in R, including how to write data frames, create functions, and use variables, statements, and loops –Statistical concepts like exploratory data analysis, probabilities, hypothesis tests, and regression modeling, and how to execute them in R –How to access R’s thousands of functions, libraries, and data sets –How to draw valid and useful conclusions from your data –How to create publication-quality graphics of your results Combining detailed explanations with real-world examples and exercises, this book will provide you with a solid understanding of both statistics and the depth of R’s functionality. Make The Book of R your doorway into the growing world of data analysis.


Author : David M. Diez
Christopher D. Barr
Publisher :
Release : 2014-07-18
Page : 354
Category : Statistics
ISBN 13 : 9781500576691
Description :


This textbook may be downloaded as a free PDF on the project's website, and the paperback is sold royalty-free. OpenIntro develops free textbooks and course resources for introductory statistics that exceeds the quality standards of traditional textbooks and resources, and that maximizes accessibility options for the typical student. The approach taken in this textbooks differs from OpenIntro Statistics in its introduction to inference. The foundations for inference are provided using randomization and simulation methods. Once a solid foundation is formed, a transition is made to traditional approaches, where the normal and t distributions are used for hypothesis testing and the construction of confidence intervals.


Author : Julie Vu
David Harrington
Publisher :
Release : 2020-03
Page :
Category :
ISBN 13 : 9781943450114
Description :


Introduction to Statistics for the Life and Biomedical Sciences has been written to be used in conjunction with a set of self-paced learning labs. These labs guide students through learning how to apply statistical ideas and concepts discussed in the text with the R computing language.The text discusses the important ideas used to support an interpretation (such as the notion of a confidence interval), rather than the process of generating such material from data (such as computing a confidence interval for a particular subset of individuals in a study). This allows students whose main focus is understanding statistical concepts to not be distracted by the details of a particular software package. In our experience, however, we have found that many students enter a research setting after only a single course in statistics. These students benefit from a practical introduction to data analysis that incorporates the use of a statistical computing language.In a classroom setting, we have found it beneficial for students to start working through the labs after having been exposed to the corresponding material in the text, either from self-reading or through an instructor presenting the main ideas. The labs are organized by chapter, and each lab corresponds to a particular section or set of sections in the text.There are traditional exercises at the end of each chapter that do not require the use of computing. In the current posting, Chapters 1 - 5 have end-of-chapter exercises. More complicated methods, such as multiple regression, do not lend themselves to hand calculation and computing is necessary for gaining practical experience with these methods. The lab exercises for these later chapters become an increasingly important part of mastering the material.An essential component of the learning labs are the "Lab Notes" accompanying each chapter. The lab notes are a detailed reference guide to the R functions that appear in the labs, written to be accessible to a first-time user of a computing language. They provide more explanation than available in the R help documentation, with examples specific to what is demonstrated in the labs.


Author : Barbara Illowsky
Susan Dean
Publisher :
Release : 2017-12-19
Page : 906
Category : Education
ISBN 13 : 9789888407309
Description :


Introductory Statistics is designed for the one-semester, introduction to statistics course and is geared toward students majoring in fields other than math or engineering. This text assumes students have been exposed to intermediate algebra, and it focuses on the applications of statistical knowledge rather than the theory behind it. The foundation of this textbook is Collaborative Statistics, by Barbara Illowsky and Susan Dean. Additional topics, examples, and ample opportunities for practice have been added to each chapter. The development choices for this textbook were made with the guidance of many faculty members who are deeply involved in teaching this course. These choices led to innovations in art, terminology, and practical applications, all with a goal of increasing relevance and accessibility for students. We strove to make the discipline meaningful, so that students can draw from it a working knowledge that will enrich their future studies and help them make sense of the world around them. Coverage and Scope Chapter 1 Sampling and Data Chapter 2 Descriptive Statistics Chapter 3 Probability Topics Chapter 4 Discrete Random Variables Chapter 5 Continuous Random Variables Chapter 6 The Normal Distribution Chapter 7 The Central Limit Theorem Chapter 8 Confidence Intervals Chapter 9 Hypothesis Testing with One Sample Chapter 10 Hypothesis Testing with Two Samples Chapter 11 The Chi-Square Distribution Chapter 12 Linear Regression and Correlation Chapter 13 F Distribution and One-Way ANOVA


Author : Jim Pitman
Publisher : Springer Science & Business Media
Release : 2012-12-06
Page : 560
Category : Mathematics
ISBN 13 : 1461243742
Description :


This is a text for a one-quarter or one-semester course in probability, aimed at students who have done a year of calculus. The book is organised so a student can learn the fundamental ideas of probability from the first three chapters without reliance on calculus. Later chapters develop these ideas further using calculus tools. The book contains more than the usual number of examples worked out in detail. The most valuable thing for students to learn from a course like this is how to pick up a probability problem in a new setting and relate it to the standard body of theory. The more they see this happen in class, and the more they do it themselves in exercises, the better. The style of the text is deliberately informal. My experience is that students learn more from intuitive explanations, diagrams, and examples than they do from theorems and proofs. So the emphasis is on problem solving rather than theory.


Author : Ken A. Aho
Publisher : CRC Press
Release : 2016-03-09
Page : 618
Category : Mathematics
ISBN 13 : 1439873399
Description :


Full of biological applications, exercises, and interactive graphical examples, Foundational and Applied Statistics for Biologists Using R presents comprehensive coverage of both modern analytical methods and statistical foundations. The author harnesses the inherent properties of the R environment to enable students to examine the code of complica


Author : Alex Reinhart
Publisher : No Starch Press
Release : 2015-03-01
Page : 176
Category : Mathematics
ISBN 13 : 1593276206
Description :


Scientific progress depends on good research, and good research needs good statistics. But statistical analysis is tricky to get right, even for the best and brightest of us. You'd be surprised how many scientists are doing it wrong. Statistics Done Wrong is a pithy, essential guide to statistical blunders in modern science that will show you how to keep your research blunder-free. You'll examine embarrassing errors and omissions in recent research, learn about the misconceptions and scientific politics that allow these mistakes to happen, and begin your quest to reform the way you and your peers do statistics. You'll find advice on: –Asking the right question, designing the right experiment, choosing the right statistical analysis, and sticking to the plan –How to think about p values, significance, insignificance, confidence intervals, and regression –Choosing the right sample size and avoiding false positives –Reporting your analysis and publishing your data and source code –Procedures to follow, precautions to take, and analytical software that can help Scientists: Read this concise, powerful guide to help you produce statistically sound research. Statisticians: Give this book to everyone you know. The first step toward statistics done right is Statistics Done Wrong.


Author : Michael H. Herzog
Gregory Francis
Publisher : Springer
Release : 2019-08-13
Page : 142
Category : Science
ISBN 13 : 3030034992
Description :


This open access textbook provides the background needed to correctly use, interpret and understand statistics and statistical data in diverse settings. Part I makes key concepts in statistics readily clear. Parts I and II give an overview of the most common tests (t-test, ANOVA, correlations) and work out their statistical principles. Part III provides insight into meta-statistics (statistics of statistics) and demonstrates why experiments often do not replicate. Finally, the textbook shows how complex statistics can be avoided by using clever experimental design. Both non-scientists and students in Biology, Biomedicine and Engineering will benefit from the book by learning the statistical basis of scientific claims and by discovering ways to evaluate the quality of scientific reports in academic journals and news outlets.


Author : Alan Anderson
Publisher : John Wiley & Sons
Release : 2013-11-26
Page : 416
Category : Business & Economics
ISBN 13 : 1118630696
Description :


Score higher in your business statistics course? Easy. Business statistics is a common course for business majors and MBA candidates. It examines common data sets and the proper way to use such information when conducting research and producing informational reports such as profit and loss statements, customer satisfaction surveys, and peer comparisons. Business Statistics For Dummies tracks to a typical business statistics course offered at the undergraduate and graduate levels and provides clear, practical explanations of business statistical ideas, techniques, formulas, and calculations, with lots of examples that shows you how these concepts apply to the world of global business and economics. Shows you how to use statistical data to get an informed and unbiased picture of the market Serves as an excellent supplement to classroom learning Helps you score your highest in your Business Statistics course If you're studying business at the university level or you're a professional looking for a desk reference on this complicated topic, Business Statistics For Dummies has you covered.


Author : Dharmaraja Selvamuthu
Dipayan Das
Publisher : Springer
Release : 2018-09-03
Page : 430
Category : Mathematics
ISBN 13 : 9811317364
Description :


This book provides an accessible presentation of concepts from probability theory, statistical methods, the design of experiments and statistical quality control. It is shaped by the experience of the two teachers teaching statistical methods and concepts to engineering students, over a decade. Practical examples and end-of-chapter exercises are the highlights of the text as they are purposely selected from different fields. Statistical principles discussed in the book have great relevance in several disciplines like economics, commerce, engineering, medicine, health-care, agriculture, biochemistry, and textiles to mention a few. A large number of students with varied disciplinary backgrounds need a course in basics of statistics, the design of experiments and statistical quality control at an introductory level to pursue their discipline of interest. No previous knowledge of probability or statistics is assumed, but an understanding of calculus is a prerequisite. The whole book serves as a master level introductory course in all the three topics, as required in textile engineering or industrial engineering. Organised into 10 chapters, the book discusses three different courses namely statistics, the design of experiments and quality control. Chapter 1 is the introductory chapter which describes the importance of statistical methods, the design of experiments and statistical quality control. Chapters 2–6 deal with statistical methods including basic concepts of probability theory, descriptive statistics, statistical inference, statistical test of hypothesis and analysis of correlation and regression. Chapters 7–9 deal with the design of experiments including factorial designs and response surface methodology, and Chap. 10 deals with statistical quality control.


Author : Thomas D. Wickens
Publisher : Psychology Press
Release : 2014-02-25
Page : 176
Category : Psychology
ISBN 13 : 1317780221
Description :


A traditional approach to developing multivariate statistical theory is algebraic. Sets of observations are represented by matrices, linear combinations are formed from these matrices by multiplying them by coefficient matrices, and useful statistics are found by imposing various criteria of optimization on these combinations. Matrix algebra is the vehicle for these calculations. A second approach is computational. Since many users find that they do not need to know the mathematical basis of the techniques as long as they have a way to transform data into results, the computation can be done by a package of computer programs that somebody else has written. An approach from this perspective emphasizes how the computer packages are used, and is usually coupled with rules that allow one to extract the most important numbers from the output and interpret them. Useful as both approaches are--particularly when combined--they can overlook an important aspect of multivariate analysis. To apply it correctly, one needs a way to conceptualize the multivariate relationships that exist among variables. This book is designed to help the reader develop a way of thinking about multivariate statistics, as well as to understand in a broader and more intuitive sense what the procedures do and how their results are interpreted. Presenting important procedures of multivariate statistical theory geometrically, the author hopes that this emphasis on the geometry will give the reader a coherent picture into which all the multivariate techniques fit.


Author : Chester Ismay
Albert Young-Sun Kim
Publisher : CRC Press
Release : 2019-12
Page : 430
Category : Mathematics
ISBN 13 : 9780367409913
Description :


"Statistical Inference via Data Science: A ModernDive into R and the Tidyverse provides a pathway for learning about statistical inference using data science tools widely used in industry, academia, and government. It introduces the tidyverse suite of R packages, including the ggplot2 package for data visualization, and the dplyr package for data wrangling. After equipping readers with just enough of these data science tools to perform effective exploratory data analyses, the book covers traditional introductory statistics topics like confidence intervals, hypothesis testing, and multiple regression modeling, while focusing on visualization throughout"--


Author : B. Burt Gerstman
Publisher : Jones & Bartlett Publishers
Release : 2014-02-07
Page : 550
Category : Education
ISBN 13 : 1284025470
Description :


Basic Biostatistics is a concise, introductory text that covers biostatistical principles and focuses on the common types of data encountered in public health and biomedical fields. The text puts equal emphasis on exploratory and confirmatory statistical methods. Sampling, exploratory data analysis, estimation, hypothesis testing, and power and precision are covered through detailed, illustrative examples. The book is organized into three parts: Part I addresses basic concepts and techniques; Part II covers analytic techniques for quantitative response variables; and Part III covers techniques for categorical responses. The Second Edition offers many new exercises as well as an all new chapter on "Poisson Random Variables and the Analysis of Rates." With language, examples, and exercises that are accessible to students with modest mathematical backgrounds, this is the perfect introductory biostatistics text for undergraduates and graduates in various fields of public health. Features: Illustrative, relevant examples and exercises incorporated throughout the book. Answers to odd-numbered exercises provided in the back of the book. (Instructors may requests answers to even-numbered exercises from the publisher. Chapters are intentionally brief and limited in scope to allow for flexibility in the order of coverage. Equal attention is given to manual calculations as well as the use of statistical software such as StaTable, SPSS, and WinPepi. Comprehensive Companion Website with Student and Instructor's Resources.


Author : Barbara Illowsky
Susan Dean
Publisher : CreateSpace
Release : 2015-02-18
Page : 612
Category :
ISBN 13 : 9781508534136
Description :


Collaborative Stastistics is intended for introductory statistics courses being taken by students at two- and four-year colleges who are majoring in fields other than math or engineering. Intermediate algebra is the only prerequisite. The book focuses on applications of statistical knowledge rather than the theory behind it. Barbara Illowsky and Susan Dean are professors of mathematics and statistics at De Anza College in Cupertino, CA. They present nationally on integrating technology, distance learning, collaborative learning, and multiculturalism into the elementary statistics classroom.


Author : David M Lane
Publisher :
Release : 2014-12-02
Page : 406
Category :
ISBN 13 : 9781687894250
Description :


Online Statistics: An Interactive Multimedia Course of Study is a resource for learning and teaching introductory statistics. It contains material presented in textbook format and as video presentations. This resource features interactive demonstrations and simulations, case studies, and an analysis lab.This print edition of the public domain textbook gives the student an opportunity to own a physical copy to help enhance their educational experience. This part I features the book Front Matter, Chapters 1-10, and the full Glossary. Chapters Include:: I. Introduction, II. Graphing Distributions, III. Summarizing Distributions, IV. Describing Bivariate Data, V. Probability, VI. Research Design, VII. Normal Distributions, VIII. Advanced Graphs, IX. Sampling Distributions, and X. Estimation. Online Statistics Education: A Multimedia Course of Study (http: //onlinestatbook.com/). Project Leader: David M. Lane, Rice University.