Pattern Recognition And Machine Learning Download Ebook PDF Epub Online

Author : Christopher M. Bishop
Publisher : Springer Verlag
Release : 2006-08-17
Page : 738
Category : Computers
ISBN 13 : 9780387310732
Description :


This is the first text on pattern recognition to present the Bayesian viewpoint, one that has become increasing popular in the last five years. It presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It provides the first text to use graphical models to describe probability distributions when there are no other books that apply graphical models to machine learning. It is also the first four-color book on pattern recognition. The book is suitable for courses on machine learning, statistics, computer science, signal processing, computer vision, data mining, and bioinformatics. Extensive support is provided for course instructors, including more than 400 exercises, graded according to difficulty. Example solutions for a subset of the exercises are available from the book web site, while solutions for the remainder can be obtained by instructors from the publisher.


Author : Christopher M. Bishop
Publisher : Springer
Release : 2016-08-23
Page : 738
Category : Computers
ISBN 13 : 9781493938438
Description :


This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.


Author : Christopher M. Bishop
Publisher :
Release : 2013
Page : 738
Category : Machine learning
ISBN 13 : 9788132209065
Description :


The field of pattern recognition has undergone substantial development over the years. This book reflects these developments while providing a grounding in the basic concepts of pattern recognition and machine learning. It is aimed at advanced undergraduates or first year PhD students, as well as researchers and practitioners.


Author : King-Sun Fu
Publisher : Springer Science & Business Media
Release : 2012-12-06
Page : 344
Category : Computers
ISBN 13 : 1461575664
Description :


This book contains the Proceedings of the US-Japan Seminar on Learning Process in Control Systems. The seminar, held in Nagoya, Japan, from August 18 to 20, 1970, was sponsored by the US-Japan Cooperative Science Program, jointly supported by the National Science Foundation and the Japan Society for the Promotion of Science. The full texts of all the presented papers except two t are included. The papers cover a great variety of topics related to learning processes and systems, ranging from pattern recognition to systems identification, from learning control to biological modelling. In order to reflect the actual content of the book, the present title was selected. All the twenty-eight papers are roughly divided into two parts--Pattern Recognition and System Identification and Learning Process and Learning Control. It is sometimes quite obvious that some papers can be classified into either part. The choice in these cases was strictly the editor's in order to keep a certain balance between the two parts. During the past decade there has been a considerable growth of interest in problems of pattern recognition and machine learn ing. In designing an optimal pattern recognition or control system, if all the a priori information about the process under study is known and can be described deterministically, the optimal system is usually designed by deterministic optimization techniques.


Author : Y. Anzai
Publisher : Elsevier
Release : 2012-12-02
Page : 407
Category : Computers
ISBN 13 : 0080513638
Description :


This is the first text to provide a unified and self-contained introduction to visual pattern recognition and machine learning. It is useful as a general introduction to artifical intelligence and knowledge engineering, and no previous knowledge of pattern recognition or machine learning is necessary. Basic for various pattern recognition and machine learning methods. Translated from Japanese, the book also features chapter exercises, keywords, and summaries.


Author : Ulisses Braga-Neto
Publisher : Springer Nature
Release : 2020-09-10
Page : 357
Category : Computers
ISBN 13 : 3030276562
Description :


Fundamentals of Pattern Recognition and Machine Learning is designed for a one or two-semester introductory course in Pattern Recognition or Machine Learning at the graduate or advanced undergraduate level. The book combines theory and practice and is suitable to the classroom and self-study. It has grown out of lecture notes and assignments that the author has developed while teaching classes on this topic for the past 13 years at Texas A&M University. The book is intended to be concise but thorough. It does not attempt an encyclopedic approach, but covers in significant detail the tools commonly used in pattern recognition and machine learning, including classification, dimensionality reduction, regression, and clustering, as well as recent popular topics such as Gaussian process regression and convolutional neural networks. In addition, the selection of topics has a few features that are unique among comparable texts: it contains an extensive chapter on classifier error estimation, as well as sections on Bayesian classification, Bayesian error estimation, separate sampling, and rank-based classification. The book is mathematically rigorous and covers the classical theorems in the area. Nevertheless, an effort is made in the book to strike a balance between theory and practice. In particular, examples with datasets from applications in bioinformatics and materials informatics are used throughout to illustrate the theory. These datasets are available from the book website to be used in end-of-chapter coding assignments based on python and scikit-learn. All plots in the text were generated using python scripts, which are also available on the book website.


Author : King-Sun Fu
Publisher : Springer
Release : 1971-07
Page : 343
Category : Computers
ISBN 13 :
Description :


This book contains the Proceedings of the US-Japan Seminar on Learning Process in Control Systems. The seminar, held in Nagoya, Japan, from August 18 to 20, 1970, was sponsored by the US-Japan Cooperative Science Program, jointly supported by the National Science Foundation and the Japan Society for the Promotion of Science. The full texts of all the presented papers except two t are included. The papers cover a great variety of topics related to learning processes and systems, ranging from pattern recognition to systems identification, from learning control to biological modelling. In order to reflect the actual content of the book, the present title was selected. All the twenty-eight papers are roughly divided into two parts--Pattern Recognition and System Identification and Learning Process and Learning Control. It is sometimes quite obvious that some papers can be classified into either part. The choice in these cases was strictly the editor's in order to keep a certain balance between the two parts. During the past decade there has been a considerable growth of interest in problems of pattern recognition and machine learn ing. In designing an optimal pattern recognition or control system, if all the a priori information about the process under study is known and can be described deterministically, the optimal system is usually designed by deterministic optimization techniques.


Author : Brian D. Ripley
Publisher : Cambridge University Press
Release : 2007
Page : 403
Category : Computers
ISBN 13 : 9780521717700
Description :


This 1996 book explains the statistical framework for pattern recognition and machine learning, now in paperback.


Author : Petra Perner
Publisher : Springer Science & Business Media
Release : 2011-08-12
Page : 614
Category : Computers
ISBN 13 : 3642231985
Description :


This book constitutes the refereed proceedings of the 7th International Conference on Machine Learning and Data Mining in Pattern Recognition, MLDM 2011, held in New York, NY, USA. The 44 revised full papers presented were carefully reviewed and selected from 170 submissions. The papers are organized in topical sections on classification and decision theory, theory of learning, clustering, application in medicine, webmining and information mining; and machine learning and image mining.


Author : M Narasimha Murty
V Susheela Devi
Publisher : World Scientific
Release : 2015-04-22
Page : 404
Category : Computers
ISBN 13 : 9814656275
Description :


This book adopts a detailed and methodological algorithmic approach to explain the concepts of pattern recognition. While the text provides a systematic account of its major topics such as pattern representation and nearest neighbour based classifiers, current topics — neural networks, support vector machines and decision trees — attributed to the recent vast progress in this field are also dealt with. Introduction to Pattern Recognition and Machine Learning will equip readers, especially senior computer science undergraduates, with a deeper understanding of the subject matter. Contents:IntroductionTypes of DataFeature Extraction and Feature SelectionBayesian LearningClassificationClassification Using Soft Computing TechniquesData ClusteringSoft ClusteringApplication — Social and Information Networks Readership: Academics and working professionals in computer science. Key Features:The algorithmic approach taken and the practical issues dealt with will aid the reader in writing programs and implementing methodsCovers recent and advanced topics by providing working exercises, examples and illustrations in each chapterProvides the reader with a deeper understanding of the subject matterKeywords:Clustering;Classification;Supervised Learning;Soft Computing


Author : Dua, Mohit
Jain, Ankit Kumar
Publisher : IGI Global
Release : 2021-05-14
Page : 355
Category : Computers
ISBN 13 : 1799833011
Description :


The artificial intelligence subset machine learning has become a popular technique in professional fields as many are finding new ways to apply this trending technology into their everyday practices. Two fields that have majorly benefited from this are pattern recognition and information security. The ability of these intelligent algorithms to learn complex patterns from data and attain new performance techniques has created a wide variety of uses and applications within the data security industry. There is a need for research on the specific uses machine learning methods have within these fields, along with future perspectives. The Handbook of Research on Machine Learning Techniques for Pattern Recognition and Information Security is a collection of innovative research on the current impact of machine learning methods within data security as well as its various applications and newfound challenges. While highlighting topics including anomaly detection systems, biometrics, and intrusion management, this book is ideally designed for industrial experts, researchers, IT professionals, network developers, policymakers, computer scientists, educators, and students seeking current research on implementing machine learning tactics to enhance the performance of information security.


Author : B. Uma Shankar
Kuntal Ghosh
Publisher : Springer
Release : 2017-12-06
Page : 695
Category : Computers
ISBN 13 : 3319699008
Description :


This book constitutes the proceedings of the 7th International Conference on Pattern Recognition and Machine Intelligence, PReMI 2017,held in Kolkata, India, in December 2017. The total of 86 full papers presented in this volume were carefully reviewed and selected from 293 submissions. They were organized in topical sections named: pattern recognition and machine learning; signal and image processing; computer vision and video processing; soft and natural computing; speech and natural language processing; bioinformatics and computational biology; data mining and big data analytics; deep learning; spatial data science and engineering; and applications of pattern recognition and machine intelligence.


Author : K.C. Fu
Publisher : Academic Press
Release : 1968
Page : 226
Category : Computers
ISBN 13 : 0080955592
Description :


Sequential Methods in Pattern Recognition and Machine Learning


Author : Geoff Dougherty
Publisher : Springer Science & Business Media
Release : 2012-10-28
Page : 196
Category : Computers
ISBN 13 : 1461453232
Description :


The use of pattern recognition and classification is fundamental to many of the automated electronic systems in use today. However, despite the existence of a number of notable books in the field, the subject remains very challenging, especially for the beginner. Pattern Recognition and Classification presents a comprehensive introduction to the core concepts involved in automated pattern recognition. It is designed to be accessible to newcomers from varied backgrounds, but it will also be useful to researchers and professionals in image and signal processing and analysis, and in computer vision. Fundamental concepts of supervised and unsupervised classification are presented in an informal, rather than axiomatic, treatment so that the reader can quickly acquire the necessary background for applying the concepts to real problems. More advanced topics, such as semi-supervised classification, combining clustering algorithms and relevance feedback are addressed in the later chapters. This book is suitable for undergraduates and graduates studying pattern recognition and machine learning.


Author : Serkan Kiranyaz
Turker Ince
Publisher : Springer Science & Business Media
Release : 2013-07-16
Page : 321
Category : Computers
ISBN 13 : 3642378463
Description :


For many engineering problems we require optimization processes with dynamic adaptation as we aim to establish the dimension of the search space where the optimum solution resides and develop robust techniques to avoid the local optima usually associated with multimodal problems. This book explores multidimensional particle swarm optimization, a technique developed by the authors that addresses these requirements in a well-defined algorithmic approach. After an introduction to the key optimization techniques, the authors introduce their unified framework and demonstrate its advantages in challenging application domains, focusing on the state of the art of multidimensional extensions such as global convergence in particle swarm optimization, dynamic data clustering, evolutionary neural networks, biomedical applications and personalized ECG classification, content-based image classification and retrieval, and evolutionary feature synthesis. The content is characterized by strong practical considerations, and the book is supported with fully documented source code for all applications presented, as well as many sample datasets. The book will be of benefit to researchers and practitioners working in the areas of machine intelligence, signal processing, pattern recognition, and data mining, or using principles from these areas in their application domains. It may also be used as a reference text for graduate courses on swarm optimization, data clustering and classification, content-based multimedia search, and biomedical signal processing applications.


Author : Christopher M. Bishop
Publisher : Oxford University Press
Release : 1995-11-23
Page : 482
Category : Computers
ISBN 13 : 0198538642
Description :


`Readers will emerge with a rigorous statistical grounding in the theory of how to construct and train neural networks in pattern recognition' New Scientist


Author : Himanshu Singh
Publisher : Apress
Release : 2019-02-26
Page : 169
Category : Computers
ISBN 13 : 1484241495
Description :


Gain insights into image-processing methodologies and algorithms, using machine learning and neural networks in Python. This book begins with the environment setup, understanding basic image-processing terminology, and exploring Python concepts that will be useful for implementing the algorithms discussed in the book. You will then cover all the core image processing algorithms in detail before moving onto the biggest computer vision library: OpenCV. You’ll see the OpenCV algorithms and how to use them for image processing. The next section looks at advanced machine learning and deep learning methods for image processing and classification. You’ll work with concepts such as pulse coupled neural networks, AdaBoost, XG boost, and convolutional neural networks for image-specific applications. Later you’ll explore how models are made in real time and then deployed using various DevOps tools. All the concepts in Practical Machine Learning and Image Processing are explained using real-life scenarios. After reading this book you will be able to apply image processing techniques and make machine learning models for customized application. What You Will Learn Discover image-processing algorithms and their applications using Python Explore image processing using the OpenCV library Use TensorFlow, scikit-learn, NumPy, and other libraries Work with machine learning and deep learning algorithms for image processing Apply image-processing techniques to five real-time projects Who This Book Is For Data scientists and software developers interested in image processing and computer vision.


Author : Petra Perner
Azriel Rosenfeld
Publisher : Springer Science & Business Media
Release : 2003-06-25
Page : 444
Category : Computers
ISBN 13 : 3540405046
Description :


TheInternationalConferenceonMachineLearningandDataMining(MLDM)is the third meeting in a series of biennial events, which started in 1999, organized by the Institute of Computer Vision and Applied Computer Sciences (IBaI) in Leipzig. MLDM began as a workshop and is now a conference, and has brought the topic of machine learning and data mining to the attention of the research community. Seventy-?ve papers were submitted to the conference this year. The program committeeworkedhardtoselectthemostprogressiveresearchinafairandc- petent review process which led to the acceptance of 33 papers for presentation at the conference. The 33 papers in these proceedings cover a wide variety of topics related to machine learning and data mining. The two invited talks deal with learning in case-based reasoning and with mining for structural data. The contributed papers can be grouped into nine areas: support vector machines; pattern dis- very; decision trees; clustering; classi?cation and retrieval; case-based reasoning; Bayesian models and methods; association rules; and applications. We would like to express our appreciation to the reviewers for their precise andhighlyprofessionalwork.WearegratefultotheGermanScienceFoundation for its support of the Eastern European researchers. We appreciate the help and understanding of the editorial sta? at Springer Verlag, and in particular Alfred Hofmann,whosupportedthepublicationoftheseproceedingsintheLNAIseries. Last, but not least, we wish to thank all the speakers and participants who contributed to the success of the conference.


Author : Petra Perner
Publisher : Springer
Release : 2018-08-19
Page : 485
Category : Computers
ISBN 13 : 3319961330
Description :


This two-volume set LNAI 10934 and LNAI 10935 constitutes the refereed proceedings of the 14th International Conference on Machine Learning and Data Mining in Pattern Recognition, MLDM 2018, held in New York, NY, USA in July 2018. The 92 regular papers presented in this two-volume set were carefully reviewed and selected from 298 submissions. The topics range from theoretical topics for classification, clustering, association rule and pattern mining to specific data mining methods for the different multi-media data types such as image mining, text mining, video mining, and Web mining.


Author : Petra Perner
Publisher : Springer
Release : 2014-07-17
Page : 536
Category : Computers
ISBN 13 : 331908979X
Description :


This book constitutes the refereed proceedings of the 10th International Conference on Machine Learning and Data Mining in Pattern Recognition, MLDM 2014, held in St. Petersburg, Russia in July 2014. The 40 full papers presented were carefully reviewed and selected from 128 submissions. The topics range from theoretical topics for classification, clustering, association rule and pattern mining to specific data mining methods for the different multimedia data types such as image mining, text mining, video mining and Web mining.