Probability Download Ebook PDF Epub Online

Author : John E. Freund
Publisher : Courier Corporation
Release : 1993-01-01
Page : 247
Category : Mathematics
ISBN 13 : 9780486675497
Description :


Featured topics include permutations and factorials, probabilities and odds, frequency interpretation, mathematical expectation, decision making, postulates of probability, rule of elimination, much more. Exercises with some solutions. Summary. 1973 edition.


Author : John J. Kinney
Publisher : John Wiley & Sons
Release : 2014-12-08
Page : 480
Category : Mathematics
ISBN 13 : 1118947088
Description :


Thoroughly updated, Probability: An Introduction with Statistical Applications, Second Edition features a comprehensive exploration of statistical data analysis as an application of probability. The new edition provides an introduction to statistics with accessible coverage of reliability, acceptance sampling, confidence intervals, hypothesis testing, and simple linear regression. Encouraging readers to develop a deeper intuitive understanding of probability, the author presents illustrative geometrical presentations and arguments without the need for rigorous mathematical proofs. Featuring a practical and real-world approach, this textbook is ideal for a first course in probability for students majoring in statistics, engineering, business, psychology, operations research, and mathematics. Probability: An Introduction with Statistical Applications, Second Edition is also an excellent reference for researchers and professionals in any discipline who need to make decisions based on data as well as readers interested in learning how to accomplish effective decision making from data.


Author : Hossein Pishro-Nik
Publisher :
Release : 2014-08-15
Page : 746
Category : Probabilities
ISBN 13 : 9780990637202
Description :


The book covers basic concepts such as random experiments, probability axioms, conditional probability, and counting methods, single and multiple random variables (discrete, continuous, and mixed), as well as moment-generating functions, characteristic functions, random vectors, and inequalities; limit theorems and convergence; introduction to Bayesian and classical statistics; random processes including processing of random signals, Poisson processes, discrete-time and continuous-time Markov chains, and Brownian motion; simulation using MATLAB and R.


Author : Charles Miller Grinstead
James Laurie Snell
Publisher : American Mathematical Soc.
Release : 2012-10
Page : 510
Category : Probabilities
ISBN 13 : 0821894145
Description :


This text is designed for an introductory probability course at the university level for sophomores, juniors, and seniors in mathematics, physical and social sciences, engineering, and computer science. It presents a thorough treatment of ideas and techniques necessary for a firm understanding of the subject. The text is also recommended for use in discrete probability courses. The material is organized so that the discrete and continuous probability discussions are presented in a separate, but parallel, manner. This organization does not emphasize an overly rigorous or formal view of probability and therefore offers some strong pedagogical value. Hence, the discrete discussions can sometimes serve to motivate the more abstract continuous probability discussions. Features: Key ideas are developed in a somewhat leisurely style, providing a variety of interesting applications to probability and showing some nonintuitive ideas. Over 600 exercises provide the opportunity for practicing skills and developing a sound understanding of ideas. Numerous historical comments deal with the development of discrete probability. The text includes many computer programs that illustrate the algorithms or the methods of computation for important problems. The book is a beautiful introduction to probability theory at the beginning level. The book contains a lot of examples and an easy development of theory without any sacrifice of rigor, keeping the abstraction to a minimal level. It is indeed a valuable addition to the study of probability theory. --Zentralblatt MATH


Author : Deborah J. Rumsey
Publisher : John Wiley & Sons
Release : 2018-05-25
Page : 384
Category : Mathematics
ISBN 13 : 1118429095
Description :


Packed with practical tips and techniques for solving probability problems Increase your chances of acing that probability exam -- or winning at the casino! Whether you're hitting the books for a probability or statistics course or hitting the tables at a casino, working out probabilities can be problematic. This book helps you even the odds. Using easy-to-understand explanations and examples, it demystifies probability -- and even offers savvy tips to boost your chances of gambling success! Discover how to * Conquer combinations and permutations * Understand probability models from binomial to exponential * Make good decisions using probability * Play the odds in poker, roulette, and other games


Author : Wolfgang von der Linden
Volker Dose
Publisher : Cambridge University Press
Release : 2014-06-12
Page : 649
Category : Mathematics
ISBN 13 : 1107035902
Description :


Covering all aspects of probability theory, statistics and data analysis from a Bayesian perspective for graduate students and researchers.


Author : Gunnar Blom
Lars Holst
Publisher : Springer Science & Business Media
Release : 1993-12-02
Page : 256
Category : Mathematics
ISBN 13 : 9780387941615
Description :


We, the authors of this book, are three ardent devotees of chance, or some what more precisely, of discrete probability. When we were collecting the material, we felt that one special pleasure of the field lay in its evocation of an earlier age: many of our 'probabilistic forefathers' were dexterous solvers of discrete problems. We hope that this pleasure will be transmitted to the readers. The first problem-book of a similar kind as ours is perhaps Mosteller's well-known Fifty Challenging Problems in Probability (1965). Possibly, our book is the second. The book contains 125 problems and snapshots from the world of prob ability. A 'problem' generally leads to a question with a definite answer. A 'snapshot' is either a picture or a bird's-eye view of some probabilistic field. The selection is, of course, highly subjective, and we have not even tried to cover all parts of the subject systematically. Limit theorems appear only seldom, for otherwise the book would have become unduly large. We want to state emphatically that we have not written a textbook in probability, but rather a book for browsing through when occupying an easy-chair. Therefore, ideas and results are often put forth without a machinery of formulas and derivations; the conscientious readers, who want to penetrate the whole clockwork, will soon have to move to their desks and utilize appropriate tools.


Author : George Boole
Publisher : Courier Corporation
Release : 2012-06
Page : 500
Category : Mathematics
ISBN 13 : 0486488268
Description :


Authoritative account of the development of Boole's ideas in logic and probability theory ranges from The Mathematical Analysis of Logic to the end of his career. The Laws of Thought formed the most systematic statement of Boole's theories; this volume contains incomplete studies intended for a follow-up volume. 1952 edition.


Author : Kenneth Lange
Publisher : Springer Science & Business Media
Release : 2008-01-17
Page : 302
Category : Mathematics
ISBN 13 : 0387227113
Description :


Despite the fears of university mathematics departments, mathematics educat,ion is growing rather than declining. But the truth of the matter is that the increases are occurring outside departments of mathematics. Engineers, computer scientists, physicists, chemists, economists, statis- cians, biologists, and even philosophers teach and learn a great deal of mathematics. The teaching is not always terribly rigorous, but it tends to be better motivated and better adapted to the needs of students. In my own experience teaching students of biostatistics and mathematical bi- ogy, I attempt to convey both the beauty and utility of probability. This is a tall order, partially because probability theory has its own vocabulary and habits of thought. The axiomatic presentation of advanced probability typically proceeds via measure theory. This approach has the advantage of rigor, but it inwitably misses most of the interesting applications, and many applied scientists rebel against the onslaught of technicalities. In the current book, I endeavor to achieve a balance between theory and app- cations in a rather short compass. While the combination of brevity apd balance sacrifices many of the proofs of a rigorous course, it is still cons- tent with supplying students with many of the relevant theoretical tools. In my opinion, it better to present the mathematical facts without proof rather than omit them altogether.


Author : Barcharts, Inc.
Publisher : Quickstudy
Release : 2010-12
Page : 6
Category : Mathematics
ISBN 13 : 9781423215080
Description :


BarCharts' handy 3-panel guide can make even the most complicated probability equations a breeze. Definitions, hints and sample problems are contained within each page, along with full-color illustrations and graphs highlighting specific problems. The "probability" of attaining better grades with this excellent reference tool is very good!


Author : Ali Grami
Publisher : Wiley
Release : 2019-04-02
Page : 500
Category : Mathematics
ISBN 13 : 1119300819
Description :


Probability, Random Variables, Statistics, and Random Processes: Fundamentals & Applications is a comprehensive undergraduate-level textbook. With its excellent topical coverage, the focus of this book is on the basic principles and practical applications of the fundamental concepts that are extensively used in various Engineering disciplines as well as in a variety of programs in Life and Social Sciences. The text provides students with the requisite building blocks of knowledge they require to understand and progress in their areas of interest. With a simple, clear-cut style of writing, the intuitive explanations, insightful examples, and practical applications are the hallmarks of this book. The text consists of twelve chapters divided into four parts. Part-I, Probability (Chapters 1 – 3), lays a solid groundwork for probability theory, and introduces applications in counting, gambling, reliability, and security. Part-II, Random Variables (Chapters 4 – 7), discusses in detail multiple random variables, along with a multitude of frequently-encountered probability distributions. Part-III, Statistics (Chapters 8 – 10), highlights estimation and hypothesis testing. Part-IV, Random Processes (Chapters 11 – 12), delves into the characterization and processing of random processes. Other notable features include: Most of the text assumes no knowledge of subject matter past first year calculus and linear algebra With its independent chapter structure and rich choice of topics, a variety of syllabi for different courses at the junior, senior, and graduate levels can be supported A supplemental website includes solutions to about 250 practice problems, lecture slides, and figures and tables from the text Given its engaging tone, grounded approach, methodically-paced flow, thorough coverage, and flexible structure, Probability, Random Variables, Statistics, and Random Processes: Fundamentals & Applications clearly serves as a must textbook for courses not only in Electrical Engineering, but also in Computer Engineering, Software Engineering, and Computer Science.


Author : Joel A. Nachlas
Publisher : CRC Press
Release : 2012-05-09
Page : 184
Category : Business & Economics
ISBN 13 : 1466502991
Description :


Suitable for a first course in probability theory and designed specifically for industrial engineering and operations management students, Probability Foundations for Engineers covers theory in an accessible manner and includes numerous practical examples based on engineering applications. Essentially, everyone understands and deals with probability every day in their normal lives. Nevertheless, for some reason, when engineering students who have good math skills are presented with the mathematics of probability theory, there is a disconnect somewhere. The book begins with a summary of set theory and then introduces probability and its axioms. The author has carefully avoided a theorem-proof type of presentation. He includes all of the theory but presents it in a conversational rather than formal manner, while relying on the assumption that undergraduate engineering students have a solid mastery of calculus. He explains mathematical theory by demonstrating how it is used with examples based on engineering applications. An important aspect of the text is the fact that examples are not presented in terms of "balls in urns". Many examples relate to gambling with coins, dice and cards but most are based on observable physical phenomena familiar to engineering students.


Author : Sheldon M. Ross
Publisher : Academic Press
Release : 2019-03-15
Page : 700
Category : Mathematics
ISBN 13 : 9780128143469
Description :


Introduction to Probability Models, Twelfth Edition, is the latest version of Sheldon Ross's classic bestseller. This trusted book introduces the reader to elementary probability modelling and stochastic processes and shows how probability theory can be applied in fields such as engineering, computer science, management science, the physical and social sciences and operations research. The hallmark features of this text have been retained in this edition, including a superior writing style and excellent exercises and examples covering the wide breadth of coverage of probability topics. In addition, many real-world applications in engineering, science, business and economics are included. Retains the valuable organization and trusted coverage that students and professors have relied on since 1972 Includes new coverage on Coupling methods, Martingales, continuous time Markov chains, and a new derivation of Poisson Process Offers updated examples and exercises throughout, along with required material for Exam 3 of the Society of Actuaries


Author : Sidney I. Resnick
Publisher : Springer Science & Business Media
Release : 2013-11-19
Page : 453
Category : Mathematics
ISBN 13 : 0817684093
Description :


Many probability books are written by mathematicians and have the built-in bias that the reader is assumed to be a mathematician coming to the material for its beauty. This textbook is geared towards beginning graduate students from a variety of disciplines whose primary focus is not necessarily mathematics for its own sake. Instead, A Probability Path is designed for those requiring a deep understanding of advanced probability for their research in statistics, applied probability, biology, operations research, mathematical finance and engineering. A one-semester course is laid out in an efficient and readable manner covering the core material. The first three chapters provide a functioning knowledge of measure theory. Chapter 4 discusses independence, with expectation and integration covered in Chapter 5, followed by topics on different modes of convergence, laws of large numbers with applications to statistics (quantile and distribution function estimation) and applied probability. Two subsequent chapters offer a careful treatment of convergence in distribution and the central limit theorem. The final chapter treats conditional expectation and martingales, closing with a discussion of two fundamental theorems of mathematical finance. Like Adventures in Stochastic Processes, Resnick’s related and very successful textbook, A Probability Path is rich in appropriate examples, illustrations and problems and is suitable for classroom use or self-study. The present uncorrected, softcover reprint is designed to make this classic textbook available to a wider audience. This book is different from the classical textbooks on probability theory in that it treats the measure theoretic background not as a prerequisite but as an integral part of probability theory. The result is that the reader gets a thorough and well-structured framework needed to understand the deeper concepts of current day advanced probability as it is used in statistics, engineering, biology and finance.... The pace of the book is quick and disciplined. Yet there are ample examples sprinkled over the entire book and each chapter finishes with a wealthy section of inspiring problems. —Publications of the International Statistical Institute This textbook offers material for a one-semester course in probability, addressed to students whose primary focus is not necessarily mathematics.... Each chapter is completed by an exercises section. Carefully selected examples enlighten the reader in many situations. The book is an excellent introduction to probability and its applications. —Revue Roumaine de Mathématiques Pures et Appliquées


Author : Jeffrey Seth Rosenthal
Publisher : World Scientific
Release : 2006
Page : 219
Category : Mathematics
ISBN 13 : 9812703705
Description :


Features an introduction to probability theory using measure theory. This work provides proofs of the essential introductory results and presents the measure theory and mathematical details in terms of intuitive probabilistic concepts, rather than as separate, imposing subjects.


Author : Roman Vershynin
Publisher : Cambridge University Press
Release : 2018-09-27
Page : 296
Category : Business & Economics
ISBN 13 : 1108415199
Description :


An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.


Author : Michael J. Evans
Jeffrey S. Rosenthal
Publisher : WH Freeman
Release : 2010-03-01
Page : 200
Category : Mathematics
ISBN 13 : 9781429224635
Description :


Unlike traditional introductory math/stat textbooks, Probability and Statistics: The Science of Uncertainty brings a modern flavor to the course, incorporating the computer and offering an integrated approach to inference that includes the frequency approach and the Bayesian inference. From the start the book integrates simulations into its theoretical coverage, and emphasizes the use of computer-powered computation throughout. Math and science majors with just one year of calculus can use this text and experience a refreshing blend of applications and theory that goes beyond merely mastering the technicalities. The new edition includes a number of features designed to make the material more accessible and level-appropriate to the students taking this course today.


Author : Matthew A. Carlton
Jay L. Devore
Publisher : Springer
Release : 2017-04-07
Page : 610
Category : Mathematics
ISBN 13 : 9783319524009
Description :


This updated and revised first-course textbook in applied probability provides a contemporary and lively post-calculus introduction to the subject of probability. The exposition reflects a desirable balance between fundamental theory and many applications involving a broad range of real problem scenarios. It is intended to appeal to a wide audience, including mathematics and statistics majors, prospective engineers and scientists, and those business and social science majors interested in the quantitative aspects of their disciplines. The textbook contains enough material for a year-long course, though many instructors will use it for a single term (one semester or one quarter). As such, three course syllabi with expanded course outlines are now available for download on the book’s page on the Springer website. A one-term course would cover material in the core chapters (1-4), supplemented by selections from one or more of the remaining chapters on statistical inference (Ch. 5), Markov chains (Ch. 6), stochastic processes (Ch. 7), and signal processing (Ch. 8—available exclusively online and specifically designed for electrical and computer engineers, making the book suitable for a one-term class on random signals and noise). For a year-long course, core chapters (1-4) are accessible to those who have taken a year of univariate differential and integral calculus; matrix algebra, multivariate calculus, and engineering mathematics are needed for the latter, more advanced chapters. At the heart of the textbook’s pedagogy are 1,100 applied exercises, ranging from straightforward to reasonably challenging, roughly 700 exercises in the first four “core” chapters alone—a self-contained textbook of problems introducing basic theoretical knowledge necessary for solving problems and illustrating how to solve the problems at hand – in R and MATLAB, including code so that students can create simulations. New to this edition • Updated and re-worked Recommended Coverage for instructors, detailing which courses should use the textbook and how to utilize different sections for various objectives and time constraints • Extended and revised instructions and solutions to problem sets • Overhaul of Section 7.7 on continuous-time Markov chains • Supplementary materials include three sample syllabi and updated solutions manuals for both instructors and students


Author : Mario Lefebvre
Publisher : Springer Science & Business Media
Release : 2009-10-03
Page : 340
Category : Mathematics
ISBN 13 : 0387749950
Description :


The main intended audience for this book is undergraduate students in pure and applied sciences, especially those in engineering. Chapters 2 to 4 cover the probability theory they generally need in their training. Although the treatment of the subject is surely su?cient for non-mathematicians, I intentionally avoided getting too much into detail. For instance, topics such as mixed type random variables and the Dirac delta function are only brie?y mentioned. Courses on probability theory are often considered di?cult. However, after having taught this subject for many years, I have come to the conclusion that one of the biggest problems that the students face when they try to learn probability theory, particularly nowadays, is their de?ciencies in basic di?erential and integral calculus. Integration by parts, for example, is often already forgotten by the students when they take a course on probability. For this reason, I have decided to write a chapter reviewing the basic elements of di?erential calculus. Even though this chapter might not be covered in class, the students can refer to it when needed. In this chapter, an e?ort was made to give the readers a good idea of the use in probability theory of the concepts they should already know. Chapter 2 presents the main results of what is known as elementary probability, including Bayes’ rule and elements of combinatorial analysis.


Author : Leonard A. Asimow
Mark M. Maxwell
Publisher : ACTEX Publications
Release : 2010-01-01
Page : 642
Category : Actuarial science
ISBN 13 : 1566987210
Description :


This text is listed on the Course of Reading for SOA Exam P, and for the CAS Exam ST. Probability and Statistics with Applications: A Problem Solving Text is an introductory textbook designed to make the subject accessible to college freshmen and sophomores concurrent with their study of calculus. The book provides the content to serve as the primary text for a standard two-semester advanced undergraduate course in mathematical probability and statistics. It is organized specifically to meet the needs of students who are preparing for the Society of Actuaries and Casualty Actuarial Society qualifying examination P/1 and the statistics component of CAS Exam 3L. Sample actuarial exam problems are integrated throughout the text along with an abundance of illustrative examples and 799 exercises. The chapters on mathematical statistics cover all of the learning objectives for the statistics portion of the Casualty Actuarial Society Exam ST syllabus. Here again, liberal use is made of past exam problems from CAS Exams 3 and 3L. A separate solutions manual for the text exercises is also available.