Probability And Mathematical Statistics Theory Applications And Practice In R Download Ebook PDF Epub Online

Author : Mary C. Meyer
Publisher : SIAM
Release : 2019-06-24
Page : 707
Category : Mathematics
ISBN 13 : 1611975786
Description :


This book develops the theory of probability and mathematical statistics with the goal of analyzing real-world data. Throughout the text, the R package is used to compute probabilities, check analytically computed answers, simulate probability distributions, illustrate answers with appropriate graphics, and help students develop intuition surrounding probability and statistics. Examples, demonstrations, and exercises in the R programming language serve to reinforce ideas and facilitate understanding and confidence. The book’s Chapter Highlights provide a summary of key concepts, while the examples utilizing R within the chapters are instructive and practical. Exercises that focus on real-world applications without sacrificing mathematical rigor are included, along with more than 200 figures that help clarify both concepts and applications. In addition, the book features two helpful appendices: annotated solutions to 700 exercises and a Review of Useful Math. Written for use in applied masters classes, Probability and Mathematical Statistics: Theory, Applications, and Practice in R is also suitable for advanced undergraduates and for self-study by applied mathematicians and statisticians and qualitatively inclined engineers and scientists.


Author : Maria Dolores Ugarte
Ana F. Militino
Publisher : CRC Press
Release : 2008-04-11
Page : 726
Category : Mathematics
ISBN 13 : 158488892X
Description :


Designed for an intermediate undergraduate course, Probability and Statistics with R shows students how to solve various statistical problems using both parametric and nonparametric techniques via the open source software R. It provides numerous real-world examples, carefully explained proofs, end-of-chapter problems, and illuminating graphs


Author : Wolfgang Karl Härdle
Vladimir Spokoiny
Publisher : Springer Science & Business Media
Release : 2013-11-08
Page : 185
Category : Mathematics
ISBN 13 : 3642368506
Description :


​The complexity of today’s statistical data calls for modern mathematical tools. Many fields of science make use of mathematical statistics and require continuous updating on statistical technologies. Practice makes perfect, since mastering the tools makes them applicable. Our book of exercises and solutions offers a wide range of applications and numerical solutions based on R. In modern mathematical statistics, the purpose is to provide statistics students with a number of basic exercises and also an understanding of how the theory can be applied to real-world problems. The application aspect is also quite important, as most previous exercise books are mostly on theoretical derivations. Also we add some problems from topics often encountered in recent research papers. The book was written for statistics students with one or two years of coursework in mathematical statistics and probability, professors who hold courses in mathematical statistics, and researchers in other fields who would like to do some exercises on math statistics.


Author : Wolfgang Karl Härdle
Vladimir Spokoiny
Publisher : Springer
Release : 2013-11-27
Page : 185
Category : Mathematics
ISBN 13 : 9783642368516
Description :


​The complexity of today’s statistical data calls for modern mathematical tools. Many fields of science make use of mathematical statistics and require continuous updating on statistical technologies. Practice makes perfect, since mastering the tools makes them applicable. Our book of exercises and solutions offers a wide range of applications and numerical solutions based on R. In modern mathematical statistics, the purpose is to provide statistics students with a number of basic exercises and also an understanding of how the theory can be applied to real-world problems. The application aspect is also quite important, as most previous exercise books are mostly on theoretical derivations. Also we add some problems from topics often encountered in recent research papers. The book was written for statistics students with one or two years of coursework in mathematical statistics and probability, professors who hold courses in mathematical statistics, and researchers in other fields who would like to do some exercises on math statistics.


Author : G. Jay Kerns
Publisher : Lulu.com
Release : 2010
Page : 370
Category :
ISBN 13 : 0557249791
Description :



Author : Jay L. Devore
Kenneth N. Berk
Publisher : Springer
Release : 2021-01-26
Page : 1029
Category : Mathematics
ISBN 13 : 9783030551551
Description :


This 3rd edition of Modern Mathematical Statistics with Applications tries to strike a balance between mathematical foundations and statistical practice. The book provides a clear and current exposition of statistical concepts and methodology, including many examples and exercises based on real data gleaned from publicly available sources. Here is a small but representative selection of scenarios for our examples and exercises based on information in recent articles: Use of the “Big Mac index” by the publication The Economist as a humorous way to compare product costs across nations Visualizing how the concentration of lead levels in cartridges varies for each of five brands of e-cigarettes Describing the distribution of grip size among surgeons and how it impacts their ability to use a particular brand of surgical stapler Estimating the true average odometer reading of used Porsche Boxsters listed for sale on www.cars.com Comparing head acceleration after impact when wearing a football helmet with acceleration without a helmet Investigating the relationship between body mass index and foot load while running The main focus of the book is on presenting and illustrating methods of inferential statistics used by investigators in a wide variety of disciplines, from actuarial science all the way to zoology. It begins with a chapter on descriptive statistics that immediately exposes the reader to the analysis of real data. The next six chapters develop the probability material that facilitates the transition from simply describing data to drawing formal conclusions based on inferential methodology. Point estimation, the use of statistical intervals, and hypothesis testing are the topics of the first three inferential chapters. The remainder of the book explores the use of these methods in a variety of more complex settings. This edition includes many new examples and exercises as well as an introduction to the simulation of events and probability distributions. There are more than 1300 exercises in the book, ranging from very straightforward to reasonably challenging. Many sections have been rewritten with the goal of streamlining and providing a more accessible exposition. Output from the most common statistical software packages is included wherever appropriate (a feature absent from virtually all other mathematical statistics textbooks). The authors hope that their enthusiasm for the theory and applicability of statistics to real world problems will encourage students to pursue more training in the discipline.


Author : Randall Pruim
Publisher : American Mathematical Soc.
Release : 2018-04-04
Page : 820
Category : Mathematical statistics
ISBN 13 : 1470428482
Description :


Foundations and Applications of Statistics simultaneously emphasizes both the foundational and the computational aspects of modern statistics. Engaging and accessible, this book is useful to undergraduate students with a wide range of backgrounds and career goals. The exposition immediately begins with statistics, presenting concepts and results from probability along the way. Hypothesis testing is introduced very early, and the motivation for several probability distributions comes from p-value computations. Pruim develops the students' practical statistical reasoning through explicit examples and through numerical and graphical summaries of data that allow intuitive inferences before introducing the formal machinery. The topics have been selected to reflect the current practice in statistics, where computation is an indispensible tool. In this vein, the statistical computing environment R is used throughout the text and is integral to the exposition. Attention is paid to developing students' mathematical and computational skills as well as their statistical reasoning. Linear models, such as regression and ANOVA, are treated with explicit reference to the underlying linear algebra, which is motivated geometrically. Foundations and Applications of Statistics discusses both the mathematical theory underlying statistics and practical applications that make it a powerful tool across disciplines. The book contains ample material for a two-semester course in undergraduate probability and statistics. A one-semester course based on the book will cover hypothesis testing and confidence intervals for the most common situations. In the second edition, the R code has been updated throughout to take advantage of new R packages and to illustrate better coding style. New sections have been added covering bootstrap methods, multinomial and multivariate normal distributions, the delta method, numerical methods for Bayesian inference, and nonlinear least squares. Also, the use of matrix algebra has been expanded, but remains optional, providing instructors with more options regarding the amount of linear algebra required.


Author : Bhisham C. Gupta
Irwin Guttman
Publisher : John Wiley & Sons
Release : 2014-03-06
Page : 896
Category : Mathematics
ISBN 13 : 1118522206
Description :


Introducing the tools of statistics and probability from the ground up An understanding of statistical tools is essential for engineers and scientists who often need to deal with data analysis over the course of their work. Statistics and Probability with Applications for Engineers and Scientists walks readers through a wide range of popular statistical techniques, explaining step-by-step how to generate, analyze, and interpret data for diverse applications in engineering and the natural sciences. Unique among books of this kind, Statistics and Probability with Applications for Engineers and Scientists covers descriptive statistics first, then goes on to discuss the fundamentals of probability theory. Along with case studies, examples, and real-world data sets, the book incorporates clear instructions on how to use the statistical packages Minitab® and Microsoft® Office Excel® to analyze various data sets. The book also features: • Detailed discussions on sampling distributions, statistical estimation of population parameters, hypothesis testing, reliability theory, statistical quality control including Phase I and Phase II control charts, and process capability indices • A clear presentation of nonparametric methods and simple and multiple linear regression methods, as well as a brief discussion on logistic regression method • Comprehensive guidance on the design of experiments, including randomized block designs, one- and two-way layout designs, Latin square designs, random effects and mixed effects models, factorial and fractional factorial designs, and response surface methodology • A companion website containing data sets for Minitab and Microsoft Office Excel, as well as JMP ® routines and results Assuming no background in probability and statistics, Statistics and Probability with Applications for Engineers and Scientists features a unique, yet tried-and-true, approach that is ideal for all undergraduate students as well as statistical practitioners who analyze and illustrate real-world data in engineering and the natural sciences.


Author : F.M. Dekking
C. Kraaikamp
Publisher : Springer Science & Business Media
Release : 2006-03-30
Page : 488
Category : Mathematics
ISBN 13 : 1846281687
Description :


Suitable for self study Use real examples and real data sets that will be familiar to the audience Introduction to the bootstrap is included – this is a modern method missing in many other books


Author : Ricardo A. Maronna
R. Douglas Martin
Publisher : Wiley
Release : 2018-12-03
Page : 464
Category : Mathematics
ISBN 13 : 1119214688
Description :


A new edition of this popular text on robust statistics, thoroughly updated to include new and improved methods and focus on implementation of methodology using the increasingly popular open-source software R. Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applications. Updated to include important new research results of the last decade and focus on the use of the popular software package R, it features in-depth coverage of the key methodology, including regression, multivariate analysis, and time series modeling. The book is illustrated throughout by a range of examples and applications that are supported by a companion website featuring data sets and R code that allow the reader to reproduce the examples given in the book. Unlike other books on the market, Robust Statistics: Theory and Methods (with R) offers the most comprehensive, definitive, and up-to-date treatment of the subject. It features chapters on estimating location and scale; measuring robustness; linear regression with fixed and with random predictors; multivariate analysis; generalized linear models; time series; numerical algorithms; and asymptotic theory of M-estimates. Explains both the use and theoretical justification of robust methods Guides readers in selecting and using the most appropriate robust methods for their problems Features computational algorithms for the core methods Robust statistics research results of the last decade included in this 2nd edition include: fast deterministic robust regression, finite-sample robustness, robust regularized regression, robust location and scatter estimation with missing data, robust estimation with independent outliers in variables, and robust mixed linear models. Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is an ideal resource for researchers, practitioners, and graduate students in statistics, engineering, computer science, and physical and social sciences.


Author : ALAN. KATERI AGRESTI (MARIA.)
Maria Kateri
Publisher : CRC Press
Release : 2024-09-15
Page : 488
Category :
ISBN 13 : 9780367748432
Description :


Designed as a textbook for a one or two-term introduction to mathematical statistics for students training to become data scientists, Foundations of Statistics for Data Scientists: With R and Python is an in-depth presentation of the topics in statistical science with which any data scientist should be familiar, including probability distributions, descriptive and inferential statistical methods, and linear modelling. The book assumes knowledge of basic calculus, so the presentation can focus on 'why it works' as well as 'how to do it.' Compared to traditional "mathematical statistics" textbooks, however, the book has less emphasis on probability theory and more emphasis on using software to implement statistical methods and to conduct simulations to illustrate key concepts. All statistical analyses in the book use R software, with an appendix showing the same analyses with Python. The book also introduces modern topics that do not normally appear in mathematical statistics texts but are highly relevant for data scientists, such as Bayesian inference, generalized linear models for non-normal responses (e.g., logistic regression and Poisson loglinear models), and regularized model fitting. The nearly 500 exercises are grouped into "Data Analysis and Applications" and "Methods and Concepts." Appendices introduce R and Python and contain solutions for odd-numbered exercises. The book's website has expanded R, Python, and Matlab appendices and all data sets from the examples and exercises. Alan Agresti, Distinguished Professor Emeritus at the University of Florida, is the author of seven books, including Categorical Data Analysis (Wiley) and Statistics: The Art and Science of Learning from Data (Pearson), and has presented short courses in 35 countries. His awards include an honorary doctorate from De Montfort University (UK) and the Statistician of the Year from the American Statistical Association (Chicago chapter). Maria Kateri, Professor of Statistics and Data Science at the RWTH Aachen University, authored the monograph Contingency Table Analysis: Methods and Implementation Using R (Birkhäuser/Springer) and a textbook on mathematics for economists (in German). She has a long-term experience in teaching statistics courses to students of Data Science, Mathematics, Statistics, Computer Science, and Business Administration and Engineering. "The main goal of this textbook is to present foundational statistical methods and theory that are relevant in the field of data science. The authors depart from the typical approaches taken by many conventional mathematical statistics textbooks by placing more emphasis on providing the students with intuitive and practical interpretations of those methods with the aid of R programming codes...I find its particular strength to be its intuitive presentation of statistical theory and methods without getting bogged down in mathematical details that are perhaps less useful to the practitioners" (Mintaek Lee, Boise State University) "The aspects of this manuscript that I find appealing: 1. The use of real data. 2. The use of R but with the option to use Python. 3. A good mix of theory and practice. 4. The text is well-written with good exercises. 5. The coverage of topics (e.g. Bayesian methods and clustering) that are not usually part of a course in statistics at the level of this book." (Jason M. Graham, University of Scranton)


Author : Anirban DasGupta
Publisher : Springer Science & Business Media
Release : 2008-03-07
Page : 722
Category : Mathematics
ISBN 13 : 0387759700
Description :


This unique book delivers an encyclopedic treatment of classic as well as contemporary large sample theory, dealing with both statistical problems and probabilistic issues and tools. The book is unique in its detailed coverage of fundamental topics. It is written in an extremely lucid style, with an emphasis on the conceptual discussion of the importance of a problem and the impact and relevance of the theorems. There is no other book in large sample theory that matches this book in coverage, exercises and examples, bibliography, and lucid conceptual discussion of issues and theorems.


Author : Dennis Wackerly
William Mendenhall
Publisher : Cengage Learning
Release : 2014-10-27
Page : 944
Category : Mathematics
ISBN 13 : 9780495110811
Description :


In their bestselling MATHEMATICAL STATISTICS WITH APPLICATIONS, premiere authors Dennis Wackerly, William Mendenhall, and Richard L. Scheaffer present a solid foundation in statistical theory while conveying the relevance and importance of the theory in solving practical problems in the real world. The authors' use of practical applications and excellent exercises helps students discover the nature of statistics and understand its essential role in scientific research. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.


Author : Charles Miller Grinstead
James Laurie Snell
Publisher : American Mathematical Soc.
Release : 2012-10
Page : 510
Category : Probabilities
ISBN 13 : 0821894145
Description :


This text is designed for an introductory probability course at the university level for sophomores, juniors, and seniors in mathematics, physical and social sciences, engineering, and computer science. It presents a thorough treatment of ideas and techniques necessary for a firm understanding of the subject. The text is also recommended for use in discrete probability courses. The material is organized so that the discrete and continuous probability discussions are presented in a separate, but parallel, manner. This organization does not emphasize an overly rigorous or formal view of probability and therefore offers some strong pedagogical value. Hence, the discrete discussions can sometimes serve to motivate the more abstract continuous probability discussions. Features: Key ideas are developed in a somewhat leisurely style, providing a variety of interesting applications to probability and showing some nonintuitive ideas. Over 600 exercises provide the opportunity for practicing skills and developing a sound understanding of ideas. Numerous historical comments deal with the development of discrete probability. The text includes many computer programs that illustrate the algorithms or the methods of computation for important problems. The book is a beautiful introduction to probability theory at the beginning level. The book contains a lot of examples and an easy development of theory without any sacrifice of rigor, keeping the abstraction to a minimal level. It is indeed a valuable addition to the study of probability theory. --Zentralblatt MATH


Author : Howard G. Tucker
Publisher : Academic Press
Release : 2014-05-12
Page : 240
Category : Mathematics
ISBN 13 : 1483225143
Description :


An Introduction to Probability and Mathematical Statistics provides information pertinent to the fundamental aspects of probability and mathematical statistics. This book covers a variety of topics, including random variables, probability distributions, discrete distributions, and point estimation. Organized into 13 chapters, this book begins with an overview of the definition of function. This text then examines the notion of conditional or relative probability. Other chapters consider Cochran's theorem, which is of extreme importance in that part of statistical inference known as analysis of variance. This book discusses as well the fundamental principles of testing statistical hypotheses by providing the reader with an idea of the basic problem and its relation to practice. The final chapter deals with the problem of estimation and the Neyman theory of confidence intervals. This book is a valuable resource for undergraduate university students who are majoring in mathematics. Students who are majoring in physics and who are inclined toward abstract mathematics will also find this book useful.


Author : Michael J. Evans
Jeffrey S. Rosenthal
Publisher : WH Freeman
Release : 2010-03-01
Page : 200
Category : Mathematics
ISBN 13 : 9781429224635
Description :


Unlike traditional introductory math/stat textbooks, Probability and Statistics: The Science of Uncertainty brings a modern flavor to the course, incorporating the computer and offering an integrated approach to inference that includes the frequency approach and the Bayesian inference. From the start the book integrates simulations into its theoretical coverage, and emphasizes the use of computer-powered computation throughout. Math and science majors with just one year of calculus can use this text and experience a refreshing blend of applications and theory that goes beyond merely mastering the technicalities. The new edition includes a number of features designed to make the material more accessible and level-appropriate to the students taking this course today.


Author : Paolo L. Gatti
Publisher : CRC Press
Release : 2014-04-21
Page : 368
Category : Architecture
ISBN 13 : 1482267764
Description :


Probability Theory and Statistical Methods for Engineers brings together probability theory with the more practical applications of statistics, bridging theory and practice. It gives a series of methods or recipes which can be applied to specific problems. This book is essential reading for practicing engineers who need a sound background knowledge of probabilistic and statistical concepts and methods of analysis for their everyday work. It is also a useful guide for graduate engineering students.


Author : Persi Diaconis
Persi W. Diaconis
Publisher : Inst of Mathematical Statistic
Release : 1988
Page : 198
Category : Mathematics
ISBN 13 :
Description :



Author : Steven R. Dunbar
Publisher : American Mathematical Soc.
Release : 2019-04-03
Page : 232
Category : Economics
ISBN 13 : 1470448394
Description :


Mathematical Modeling in Economics and Finance is designed as a textbook for an upper-division course on modeling in the economic sciences. The emphasis throughout is on the modeling process including post-modeling analysis and criticism. It is a textbook on modeling that happens to focus on financial instruments for the management of economic risk. The book combines a study of mathematical modeling with exposure to the tools of probability theory, difference and differential equations, numerical simulation, data analysis, and mathematical analysis. Students taking a course from Mathematical Modeling in Economics and Finance will come to understand some basic stochastic processes and the solutions to stochastic differential equations. They will understand how to use those tools to model the management of financial risk. They will gain a deep appreciation for the modeling process and learn methods of testing and evaluation driven by data. The reader of this book will be successfully positioned for an entry-level position in the financial services industry or for beginning graduate study in finance, economics, or actuarial science. The exposition in Mathematical Modeling in Economics and Finance is crystal clear and very student-friendly. The many exercises are extremely well designed. Steven Dunbar is Professor Emeritus of Mathematics at the University of Nebraska and he has won both university-wide and MAA prizes for extraordinary teaching. Dunbar served as Director of the MAA's American Mathematics Competitions from 2004 until 2015. His ability to communicate mathematics is on full display in this approachable, innovative text.


Author : Ross Leadbetter
Stamatis Cambanis
Publisher : Cambridge University Press
Release : 2014-01-30
Page : 376
Category : Mathematics
ISBN 13 : 1107020409
Description :


A concise introduction covering all of the measure theory and probability most useful for statisticians.