Three Dimensional Attached Viscous Flow Download Ebook PDF Epub Online

Author : Ernst Heinrich Hirschel
Jean Cousteix
Publisher : Springer Science & Business Media
Release : 2013-10-29
Page : 391
Category : Technology & Engineering
ISBN 13 : 3642413781
Description :


Viscous flow is treated usually in the frame of boundary-layer theory and as two-dimensional flow. Books on boundary layers give at most the describing equations for three-dimensional boundary layers, and solutions often only for some special cases. This book provides basic principles and theoretical foundations regarding three-dimensional attached viscous flow. Emphasis is put on general three-dimensional attached viscous flows and not on three-dimensional boundary layers. This wider scope is necessary in view of the theoretical and practical problems to be mastered in practice. The topics are weak, strong, and global interaction, the locality principle, properties of three-dimensional viscous flow, thermal surface effects, characteristic properties, wall compatibility conditions, connections between inviscid and viscous flow, flow topology, quasi-one- and two-dimensional flows, laminar-turbulent transition and turbulence. Though the primary flight speed range is that of civil air transport vehicles, flows past other flying vehicles up to hypersonic speeds are also considered. Emphasis is put on general three-dimensional attached viscous flows and not on three-dimensional boundary layers, as this wider scope is necessary in view of the theoretical and practical problems that have to be overcome in practice. The specific topics covered include weak, strong, and global interaction; the locality principle; properties of three-dimensional viscous flows; thermal surface effects; characteristic properties; wall compatibility conditions; connections between inviscid and viscous flows; flow topology; quasi-one- and two-dimensional flows; laminar-turbulent transition; and turbulence. Detailed discussions of examples illustrate these topics and the relevant phenomena encountered in three-dimensional viscous flows. The full governing equations, reference-temperature relations for qualitative considerations and estimations of flow properties, and coordinates for fuselages and wings are also provided. Sample problems with solutions allow readers to test their understanding.


Author : Ernst Heinrich Hirschel
Jean Cousteix
Publisher : Springer
Release : 2013-11-27
Page : 391
Category : Technology & Engineering
ISBN 13 : 9783642413797
Description :


Viscous flow is treated usually in the frame of boundary-layer theory and as two-dimensional flow. Books on boundary layers give at most the describing equations for three-dimensional boundary layers, and solutions often only for some special cases. This book provides basic principles and theoretical foundations regarding three-dimensional attached viscous flow. Emphasis is put on general three-dimensional attached viscous flows and not on three-dimensional boundary layers. This wider scope is necessary in view of the theoretical and practical problems to be mastered in practice. The topics are weak, strong, and global interaction, the locality principle, properties of three-dimensional viscous flow, thermal surface effects, characteristic properties, wall compatibility conditions, connections between inviscid and viscous flow, flow topology, quasi-one- and two-dimensional flows, laminar-turbulent transition and turbulence. Though the primary flight speed range is that of civil air transport vehicles, flows past other flying vehicles up to hypersonic speeds are also considered. Emphasis is put on general three-dimensional attached viscous flows and not on three-dimensional boundary layers, as this wider scope is necessary in view of the theoretical and practical problems that have to be overcome in practice. The specific topics covered include weak, strong, and global interaction; the locality principle; properties of three-dimensional viscous flows; thermal surface effects; characteristic properties; wall compatibility conditions; connections between inviscid and viscous flows; flow topology; quasi-one- and two-dimensional flows; laminar-turbulent transition; and turbulence. Detailed discussions of examples illustrate these topics and the relevant phenomena encountered in three-dimensional viscous flows. The full governing equations, reference-temperature relations for qualitative considerations and estimations of flow properties, and coordinates for fuselages and wings are also provided. Sample problems with solutions allow readers to test their understanding.


Author : F. Monnoyer de Galland
Hubschrauber und Flugzeuge, Messerschmitt-Bölkow-Blohm GmbH, Ottobrunn
Publisher :
Release : 1989
Page : 45
Category :
ISBN 13 :
Description :



Author : Ernst Heinrich Hirschel
Publisher : Springer Science & Business Media
Release : 2004-09-30
Page : 413
Category : Technology & Engineering
ISBN 13 : 9783540221326
Description :


The last two decades have brought two important developments for aeroth- modynamics. One is that airbreathing hypersonic flight became the topic of technology programmes and extended system studies. The other is the emergence and maturing of the discrete numerical methods of aerodyn- ics/aerothermodynamics complementary to the ground-simulation facilities, with the parallel enormous growth of computer power. Airbreathing hypersonic flight vehicles are, in contrast to aeroassisted re-entry vehicles, drag sensitive. They have, further, highly integrated lift and propulsion systems. This means that viscous eflFects, like boundary-layer development, laminar-turbulent transition, to a certain degree also strong interaction phenomena, are much more important for such vehicles than for re-entry vehicles. This holds also for the thermal state of the surface and thermal surface effects, concerning viscous and thermo-chemical phenomena (more important for re-entry vehicles) at and near the wall. The discrete numerical methods of aerodynamics/aerothermodynamics permit now - what was twenty years ago not imaginable - the simulation of high speed flows past real flight vehicle configurations with thermo-chemical and viscous effects, the description of the latter being still handicapped by in sufficient flow-physics models. The benefits of numerical simulation for flight vehicle design are enormous: much improved aerodynamic shape definition and optimization, provision of accurate and reliable aerodynamic data, and highly accurate determination of thermal and mechanical loads. Truly mul- disciplinary design and optimization methods regarding the layout of thermal protection systems, all kinds of aero-servoelasticity problems of the airframe, et cetera, begin now to emerge.


Author : BERTIN
PERIAUX
Publisher : Springer Science & Business Media
Release : 2012-12-06
Page : 427
Category : Technology & Engineering
ISBN 13 : 1461203759
Description :


These three volumes entitled Advances in Hypersonics contain the Proceedings of the Second and Third Joint US/Europe Short Course in Hypersonics which took place in Colorado Springs and Aachen. The Second Course was organized at the US Air Force Academy, USA in January 1989 and the Third Course at Aachen, Germany in October 1990. The main idea of these Courses was to present to chemists, com puter scientists, engineers, experimentalists, mathematicians, and physicists state of the art lectures in scientific and technical dis ciplines including mathematical modeling, computational methods, and experimental measurements necessary to define the aerothermo dynamic environments for space vehicles such as the US Orbiter or the European Hermes flying at hypersonic speeds. The subjects can be grouped into the following areas: Phys ical environments, configuration requirements, propulsion systems (including airbreathing systems), experimental methods for external and internal flow, theoretical and numerical methods. Since hyper sonic flight requires highly integrated systems, the Short Courses not only aimed to give in-depth analysis of hypersonic research and technology but also tried to broaden the view of attendees to give them the ability to understand the complex problem of hypersonic flight. Most of the participants in the Short Courses prepared a docu ment based on their presentation for reproduction in the three vol umes. Some authors spent considerable time and energy going well beyond their oral presentation to provide a quality assessment of the state of the art in their area of expertise as of 1989 and 1991.


Author : Hermann Schlichting (Deceased)
Klaus Gersten
Publisher : Springer
Release : 2016-10-04
Page : 805
Category : Technology & Engineering
ISBN 13 : 366252919X
Description :


This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.


Author : Arthur Rizzi
Jesper Oppelstrup
Publisher : Cambridge University Press
Release : 2021-05-20
Page : 465
Category : Mathematics
ISBN 13 : 1107019486
Description :


Aerodynamic design of aircraft presented with realistic applications, using CFD software. Tutorials, exercises, and mini-projects provided involve design of real aircraft. Using online resources and supplements, this text prepares last-year undergraduates and first-year graduate students for industrial aerospace design and analysis tasks.


Author : Claus Weiland
Publisher : Springer Nature
Release : 2020-06-29
Page : 199
Category : Science
ISBN 13 : 303042930X
Description :


The mechanics of similarity encompasses the analysis of dimensions, performed by various procedures, the gasdynamic similarity and the model technology. The analysis of dimensions delivers the dimensionless numbers by which specific physical challenges can be described with a reduced number of variables. Thereby the assessment of physical problems is facilitated. For fluid dynamics and all sorts of heat transfer the discipline of the mechanics of similarity was so important in the past, that the historical background is highlighted of all the persons who have contributed to the development of this discipline. The goal of the classical gasdynamic similarity was to find rules, which enables the aerodynamic engineer to perform transformations from existing flow fields to others, which meet geometrical and other specific flow field parameters. Most of these rules and findings do no longer play a role today, because a lot of potent experimental and theoretical/numerical methods are now available. This problem is addressed in the book. A recent investigation regarding the longitudinal aerodynamics of space vehicles has revealed, that there exist other astonishing similarities for hypersonic and supersonic flight Mach numbers. It seems, that obviously most of the longitudinal aerodynamics is independent from the geometrical configurations of the space vehicle considered, if a simple transformation is applied. A section of this book is devoted to these new findings.


Author : Jeffrey S. Marshall
Publisher :
Release : 1999
Page : 39
Category : Fluid dynamics
ISBN 13 :
Description :


An experimental and computational study of the impact of a vortex with a body oriented normal to the vortex axis was performed. Particular focus was placed on understanding characteristics of the secondary vorticity ejected from the body and the interaction of the secondary vorticity with the primary vortex. Since both onset of boundary layer separation and the form of the secondary vorticity structures are sensitive to variation of the velocity normal to the body axis, the effect of normal velocity on vortex-body interaction was carefully examined. The physical features of the flow evolution were categorized in terms of an impact parameter and a thickness parameter, which respectively represent ratios of velocity and length scales associated with the vortex to those associated with the flow in the absence of the vortex. Experiments were performed using a combination of laser-induced fluorescence (LIF) flow visualization and particle-image velocimetry (PIV) in a water tank to examine the form of the secondary vorticity structures with both "high" and "low" values of the impact parameter for normal vortex interaction with a circular cylinder and with a thin blade. A new type of Lagrangian vorticity method based on a tetrahedral mesh was developed and applied to compute the secondary vorticity evolution during vortex-cylinder interaction. Computations were also performed for model problems to examine in detail wrapping of a vortex loop around a columnar vortex and impulsive cutting of a columnar vortex with finite axial flow.


Author : North Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development. Fluid Dynamics Panel. Specialists' Meeting
Publisher :
Release : 1990
Page : 250
Category : Aerodynamics
ISBN 13 :
Description :


The AGARD Fluid Dynamics Panel sponsored this Symposium to provide a survey of the capabilities of the CFD community for griding complex 3-D configurations. The intent was to provide some insight to the present state of grid generation for complex configurations to help assess whether this task presents a long-term stumbling block to the routine use of CFD in aerodynamic applications. To this end, the meeting was structured in five sessions: General Surveys, Algebraic Grid Generation, Block Structured Meshes, Multiblock-Adaptive Meshes and Unstructured Meshes. Thwenty-two papers from these sessions amply gemonstrated that the viability of a numerical solution depends directly on the quality of the mesh and surface representation as measured by its spacing and resolution. Of Particular interest was the mesh generation for complex configurations, such as advanced fighter or transport aircraft, missiles and space vehicles, where complex geometries and/or complex flowfields have to be analysed. Results from this meeting indicate that geometry discretization and generation of meshes for complex 3-D configurations in aerospace will continue to be time- and cost-consuming operations fro some time to come.


Author : Ernst Heinrich Hirschel
Publisher : Springer
Release : 2015-01-06
Page : 446
Category : Technology & Engineering
ISBN 13 : 3319143735
Description :


This successful book gives an introduction to the basics of aerothermodynamics, as applied in particular to winged re-entry vehicles and airbreathing hypersonic cruise and acceleration vehicles. The book gives a review of the issues of transport of momentum, energy and mass, real-gas effects as well as inviscid and viscous flow phenomena. In this second, revised edition the chapters with the classical topics of aerothermodynamics more or less were left untouched. The access to some single topics of practical interest was improved. Auxiliary chapters were put into an appendix. The recent successful flights of the X-43A and the X-51A indicate that the dawn of sustained airbreathing hypersonic flight now has arrived. This proves that the original approach of the book to put emphasis on viscous effects and the aerothermodynamics of radiation-cooled vehicle surfaces was timely. This second, revised edition even more accentuates these topics. A new, additional chapter treats examples of viscous thermal surface effects. Partly only very recently obtained experimental and numerical results show the complexity of such phenomena (dependence of boundary-layer stability, skin friction, boundary-layer thicknesses, and separation on the thermal state of the surface) and their importance for airbreathing hypersonic flight vehicles, but also for any other kind of hypersonic vehicle.


Author :
Publisher :
Release : 1985
Page : 41
Category :
ISBN 13 :
Description :



Author : Ernst Heinrich Hirschel
Arthur Rizzi
Publisher : Springer Nature
Release : 2020-11-05
Page : 456
Category : Technology & Engineering
ISBN 13 : 366261328X
Description :


Fluid mechanical aspects of separated and vortical flow in aircraft wing aerodynamics are treated. The focus is on two wing classes: (1) large aspect-ratio wings and (2) small aspect-ratio delta-type wings. Aerodynamic design issues in general are not dealt with. Discrete numerical simulation methods play a progressively larger role in aircraft design and development. Accordingly, in the introduction to the book the different mathematical models are considered, which underlie the aerodynamic computation methods (panel methods, RANS and scale-resolving methods). Special methods are the Euler methods, which as rather inexpensive methods embrace compressibility effects and also permit to describe lifting-wing flow. The concept of the kinematically active and inactive vorticity content of shear layers gives insight into many flow phenomena, but also, with the second break of symmetry---the first one is due to the Kutta condition---an explanation of lifting-wing flow fields. The prerequisite is an extended definition of separation: “flow-off separation” at sharp trailing edges of class (1) wings and at sharp leading edges of class (2) wings. The vorticity-content concept, with a compatibility condition for flow-off separation at sharp edges, permits to understand the properties of the evolving trailing vortex layer and the resulting pair of trailing vortices of class (1) wings. The concept also shows that Euler methods at sharp delta or strake leading edges of class (2) wings can give reliable results. Three main topics are treated: 1) Basic Principles are considered first: boundary-layer flow, vortex theory, the vorticity content of shear layers, Euler solutions for lifting wings, the Kutta condition in reality and the topology of skin-friction and velocity fields. 2) Unit Problems treat isolated flow phenomena of the two wing classes. Capabilities of panel and Euler methods are investigated. One Unit Problem is the flow past the wing of the NASA Common Research Model. Other Unit Problems concern the lee-side vortex system appearing at the Vortex-Flow Experiment 1 and 2 sharp- and blunt-edged delta configurations, at a delta wing with partly round leading edges, and also at the Blunt Delta Wing at hypersonic speed. 3) Selected Flow Problems of the two wing classes. In short sections practical design problems are discussed. The treatment of flow past fuselages, although desirable, was not possible in the frame of this book.


Author : North Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development
Publisher :
Release : 1991
Page :
Category : Aerodynamics
ISBN 13 :
Description :



Author : P.K. Banerjee
L. Morino
Publisher : CRC Press
Release : 1990-05-31
Page : 368
Category : Science
ISBN 13 : 1482296551
Description :


This volume demonstrates that boundary element methods are both elegant and efficient in their application to time dependent time harmonic problems in engineering and therefore worthy of considerable development.


Author :
Publisher :
Release : 1993
Page :
Category : Airplanes
ISBN 13 :
Description :



Author :
Publisher :
Release : 1998
Page :
Category : Aeronautics
ISBN 13 :
Description :



Author : International Council of the Aeronautical Sciences
Publisher :
Release : 1990
Page :
Category : Aeronautics
ISBN 13 :
Description :



Author :
Publisher :
Release : 1990
Page :
Category : Aeronautics
ISBN 13 :
Description :



Author : James T. Howlett
Publisher :
Release : 1992
Page : 36
Category : Aerodynamics, Transonic
ISBN 13 :
Description :